
Offers Primitive
Security Audit Report

Chia Network
Final Audit Report: 20 September 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Improper Check of Balance Causes Crashes During Offer Creation

Issue B: Offer Decoding May Lead To Unexpected Errors

Suggestions

Suggestion 1: Use Consistent Terminology Within Code

Suggestion 2: Create a Parent Class for Classes With Similar Functions and Names

Suggestion 3: Improve Error Handling

Suggestion 4: Increase Test Coverage

Suggestion 5: Refactor Code To Improve Input Validation, Ease of Testing

Suggestion 6: Perform Property-Based Testing on Decoding / Parsing Functionalities

Suggestion 7: Resolve TODOs in Codebase

Suggestion 8: Improve Code Comments

Appendix

Appendix A: Invalid Offer Example

About Least Authority

Our Methodology

Security Audit Report | Offers Primitive | Chia Network 1
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Chia Network has requested that Least Authority perform a security audit of their Offers Primitive.

Project Dates
● March 20 - May 16, 2023: Initial Code Review (Completed)
● May 19, 2023: Delivery of Initial Audit Report (Completed)
● September 20, 2023: Verification Review (Completed)
● September 20, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Nicole Ernst, Security Researcher and Engineer
● Nikos Iliakis, Security Researcher and Engineer
● Steven Jung, Security Researcher and Engineer
● Ann-Christine Kycler, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Offers Primitive followed by issue
reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Chia-Network / Chia-blockchain:

https://github.com/Chia-Network/chia-blockchain
○ Trade Manager:

■ https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/puzzle
s/settlement_payments.clsp

■ https://github.com/Chia-Network/chia-blockchain/tree/main/chia/wallet/trading
■ https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/trade_

manager.py
■ https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/trade_r

ecord.py
■ https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/outer_

puzzles.py
■ https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/nft_wal

let/nft_wallet.py#L785-L1068
■ https://github.com/Chia-Network/chia-blockchain/blob/main/chia/data_layer/da

ta_layer_wallet.py#L1142-L1286
■ https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/puzzle

s/graftroot_dl_offers.clsp
○ Action Manager

■ https://github.com/Chia-Network/chia-blockchain/tree/quex.offer_refactor/chia/
wallet/action_manager

■ https://github.com/Chia-Network/chia-blockchain/blob/quex.offer_refactor/chia/
wallet/puzzles/add_wrapped_announcement.clsp

■ new `InnerDriver`/`OuterDriver` classes

Security Audit Report | Offers Primitive | Chia Network 2
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Chia-Network/chia-blockchain
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/puzzles/settlement_payments.clsp
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/puzzles/settlement_payments.clsp
https://github.com/Chia-Network/chia-blockchain/tree/main/chia/wallet/trading
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/trade_manager.py
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/trade_manager.py
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/trade_record.py
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/trade_record.py
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/outer_puzzles.py
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/outer_puzzles.py
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/nft_wallet/nft_wallet.py#L785-L1068
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/nft_wallet/nft_wallet.py#L785-L1068
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/data_layer/data_layer_wallet.py#L1142-L1286
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/data_layer/data_layer_wallet.py#L1142-L1286
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/puzzles/graftroot_dl_offers.clsp
https://github.com/Chia-Network/chia-blockchain/blob/main/chia/wallet/puzzles/graftroot_dl_offers.clsp
https://github.com/Chia-Network/chia-blockchain/tree/quex.offer_refactor/chia/wallet/action_manager
https://github.com/Chia-Network/chia-blockchain/tree/quex.offer_refactor/chia/wallet/action_manager
https://github.com/Chia-Network/chia-blockchain/blob/quex.offer_refactor/chia/wallet/puzzles/add_wrapped_announcement.clsp
https://github.com/Chia-Network/chia-blockchain/blob/quex.offer_refactor/chia/wallet/puzzles/add_wrapped_announcement.clsp

Specifically, we examined the Git revision for our initial review:

● Dac9ee506519fa53425986b0c6f1e4fd3ae97dea

For the verification, we examined the Git revision:

● b32128949f09ef3e08484fd36b911ba9df10a0dc

For the review, this repository was cloned for use during the audit and for reference in this report:

● Chia-Network / Chia-blockchain:
https://github.com/LeastAuthority/Chia-Network

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Primitive:
https://chialisp.com/offers

● RPC API:
https://docs.chia.net/offer-rpc

● CLI API:
https://docs.chia.net/offer-cli

● GUI Tutorial:
https://docs.chia.net/guides/offers-gui-tutorial

● CLI Tutorial:
https://docs.chia.net/guides/offers-cli-tutorial

In addition, this audit report references the following documents and links:
● S. Bratus, L. Hermerschmidt, S. M. Hallberg, M. E. Locasto, F. D. Momot, et al., “Curing the

Vulnerable Parser: Design Patterns for Secure Input Handling.” USENIX, 2017, [BHH+17]
● Hypothesis:

https://hypothesis.readthedocs.io/en/latest

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adversarial actions and other attacks;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) attacks and security exploits that would impact or disrupt execution;
● Vulnerabilities within individual components and whether the interactions between the

components are secure;
● Exposure of any critical information during interaction with any external libraries;
● Proper management of encryption and signing keys;
● Protection against malicious attacks and other methods of exploitation;

Security Audit Report | Offers Primitive | Chia Network 3
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Chia-Network
https://chialisp.com/offers
https://docs.chia.net/offer-rpc
https://docs.chia.net/offer-cli
https://docs.chia.net/guides/offers-gui-tutorial
https://docs.chia.net/guides/offers-cli-tutorial
https://www.usenix.org/system/files/login/articles/login_spring17_08_bratus.pdf
https://hypothesis.readthedocs.io/en/latest/

● Data privacy, data leaking, and information integrity;
● Inappropriate permissions and excess authority; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Chia Network’s Offers Primitive enables users to exchange assets without requiring an intermediary and
while ensuring both buyer and seller in any transaction receive what they expected in assets. Users
wanting to sell or buy an asset such as a token or NFT create an Offer, which can be posted to the
public. The Offer consists of a Bech32-encoded file including an encoded Offer object – an unfinished
spend bundle. A counterparty wishing to accept the Offer creates a transaction by completing the spend
bundle, at which point the transaction between seller and buyer is finalized on-chain.

Our team performed a comprehensive review of the Offers Primitive and investigated the areas of concern
listed above. We considered a threat model with the attacker taking the role of each the maker, the taker,
and the observer of an Offer within the Offers Primitive. We examined the mechanism that checks the
validity of an Offer for security vulnerabilities. We investigated the use of nonces in the implementation
and issues arising from the potential reuse of nonces in notarized payments. In addition, our team
checked for security vulnerabilities resulting from the handling of multi-asset Offers and from Offer
aggregation.

Our team checked the implementation of the Inner and Outer classes, files that interpret asset-specific
wallet and puzzle code, as it relates to Offers. Furthermore, our team performed preliminary
property-based testing on Offers to identify potential edge cases that could cause unexpected behavior.

Our team found that Offers Primitive is well-designed and implemented. Although we did not identify
critical issues in the design and implementation, we found opportunities for improvement in the code
quality, testing, and documentation, which all contribute to the overall security of the system.

System Design
The Offers Primitive is a decentralized protocol enabling users to exchange assets and sets of assets
efficiently while protecting the counterparties in the transaction, and the network. Offers are exchanged
in Bech32 format and can be created by anyone. Our team could not find a way to circumvent the checks
put in place to prevent an attacker from causing harm to the system and/or its users. However, due to the
decentralized and public nature of Offer creation and publication, we found that the design of the
system can be improved by considering components within the system untrusted. This requires rigorous
validation of inputs at well-considered points in the workflow. As a result, we recommend that the process
of parsing an Offer file be improved to better prevent malformed Offers from being parsed in
accordance with the “parsing before processing” principle (Issue B).

Code Quality
Our team performed a manual review of the files listed above and found that the code is well-organized,
and there are comments explaining critical parts of the code. However, our team identified an
implementation error that leads to crashes during Offer creation (Issue A). We also identified areas of
improvement in error handling within the implementation (Suggestion 3), and recommend the use of a
parent class for classes with similar functions (Suggestion 2). In addition, our team found unresolved
TODOs in the codebase, which reduced the readability of the code and raised questions about its

Security Audit Report | Offers Primitive | Chia Network 4
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

completeness. We recommend that outstanding TODOs be resolved and removed from the codebase
(Suggestion 7).

Tests

While the Offers Primitive contains sufficient coverage of integration tests, no unit tests were
implemented. Inclusion of unit tests in the CI and continuous deployment workflows is considered best
practice and aids in automating the process of verification. Higher test coverage increases trust in the
system and enables early detection of bugs and errors. As a result, we recommend that the Chia team
increase unit test coverage (Suggestion 4).

We also recommend refactoring the code to improve testability and readability (Suggestions 5), and
implementing property-based tests to increase the likelihood of finding bugs in the handling of edge
cases (Suggestion 6).

Documentation
The project documentation provided for this review is in need of improvement, as it accurately describes
what the Offers protocol does but does not provide a sufficient description of how the functionality is
implemented in the codebase. It is difficult to read the documentation and find the corresponding
functionality in the code, and vice versa. We recommend that the language in the documentation match
the language in the code and that key terminology be made more consistent to facilitate reasoning about
the security of the implementation and checking for unintended behavior (Suggestion 1).

Code Comments

Our team found that some functions and components have sufficient code comments that describe their
expected behavior. However, we recommend that code comments be improved in their consistency
(Suggestion 8).

Scope
The scope of this review included all security-critical functionality of the Offers primitive. Our team
assumed that user interfaces such as devices and wallets behave as expected. During the review, the Chia
team stated that the functionalities that are in the trade manager are planned to be moved into the
action manager. As a result, we recommend that a further review be performed by an independent
security team once those changes are complete.

Dependencies

Our team did not identify any security issues in the use of dependencies.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Improper Check of Balance Causes Crashes During Offer Creation Resolved

Issue B: Offer Decoding May Lead To Unexpected Errors Unresolved

Suggestion 1: Use Consistent Terminology Within Code Unresolved

Security Audit Report | Offers Primitive | Chia Network 5
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 2: Create a Parent Class for Classes With Similar Functions and
Names

Unresolved

Suggestion 3: Improve Error Handling Unresolved

Suggestion 4: Increase Test Coverage Unresolved

Suggestion 5: Refactor Code To Improve Input Validation, Ease of Testing Unresolved

Suggestion 6: Perform Property-Based Testing on Decoding / Parsing
Functionalities

Unresolved

Suggestion 7: Resolve TODOs in Codebase Unresolved

Suggestion 8: Improve Code Comments Unresolved

Issue A: Improper Check of Balance Causes Crashes During Offer Creation

Location

chia/wallet/wallet.py#L654-L657

Synopsis

The check for sufficient balance does not properly verify if the balance is spendable. This leads to crashes
in the Offer creation code after the balance is checked.

Technical Details

balance = await self.get_confirmed_balance() should be balance = await
self.get_spendable_balance()

Remediation

We recommend replacing the function get_confirmed_balance with get_spendable_balance.

Status

The Chia team has implemented the recommended remediation.

Verification

Resolved.

Issue B: Offer Decoding May Lead To Unexpected Errors

Location

chia/wallet/trading/offer.py

Synopsis

It is possible to create Offers with the constructor and transform them to Bech32, causing crashes in
from_bech32. Offers that are Bech32-encoded should be treated as untrusted inputs and be properly
parsed/validated.

Security Audit Report | Offers Primitive | Chia Network 6
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Chia-Network/blob/dac9ee506519fa53425986b0c6f1e4fd3ae97dea/chia/wallet/wallet.py#L654-L657
https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/trading/offer.py

Furthermore, it is possible to create an Offer that successfully translates to Bech32, gets successfully
decoded, but then fails upon further usage. See [BHH+17] for design patterns for secure input handling.

Impact

Attackers may craft inputs that cause errors in the user’s wallet on import. This could lead to unexpected
system states or crashes.

Preconditions

An attacker would need to get a user to import a Bech32-encoded Offer file.

Feasibility

In order to produce a crash with an invalid Offer, the attacker would need to understand the data
structures involved in the Offers.

Technical Details

Currently, there are several functions, such as from_bech32, from_bytes, and parse, that return
objects of the class Offer within that class, which might operate on external input. Using property-based
testing with hypothesis, our team generated strategies, which produced the simplest structures that
would be accepted as inputs to the Offer constructor. This revealed that it is possible to generate
Offers that will successfully be encoded with the to_bech32 function, but then would either fail in the
from_bech32 function or – even more surprisingly – fail when functions are called on the Offer object
that is returned by the decoding function. For an example of an Offer file that should be rejected as
invalid before attempting to process, please refer to Appendix A.

Remediation

We suggest that there be one location that creates an Offer object from an external input, and that all
validation be performed in that one location. This means that the Offer object returned should be a valid
object, and no method call on an object should cause errors due to improper encoding, missing dictionary
elements, improper coin expenditure, etc.

Status

At the time of the verification, the suggested remediation has not been resolved.

Verification

Unresolved.

Suggestions

Suggestion 1: Use Consistent Terminology Within Code

Location

chia/wallet/trade_manager.py#L628

Synopsis

Our team identified multiple instances of variables being named inconsistently within the implementation
(e.g., solver and sibling in the keybase chat). In addition, there are instances in which function names
do not provide sufficient insight to the expected behavior of the function.

Security Audit Report | Offers Primitive | Chia Network 7
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://www.usenix.org/system/files/login/articles/login_spring17_08_bratus.pdf
https://github.com/LeastAuthority/Chia-Network/blob/a3d2f8ef630039e6177e0414decd9bee23fa6b22/chia/wallet/trade_manager.py#L628

Mitigation

We recommend consistent use of terminology in the codebase and documentation by adhering to a single
naming convention and naming functions descriptively to indicate their intended purpose.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Suggestion 2: Create a Parent Class for Classes With Similar Functions and
Names

Location

chia/wallet/action_manager/actions_aliases.py

Synopsis

There are a number of classes that have functions and names in common (e.g., `from_solver`).

Mitigation

We recommend that a(n) parent/abstract class be created, and that these classes inherit/implement the
interface to overload these functions. We further recommend checking that all the necessary functionality
is implemented, and avoiding duplicates, across the entire codebase.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Suggestion 3: Improve Error Handling

Location

wallet/trading/offer.py#L150-L151

wallet/action_manager/protocols.py#L294-L298

Synopsis

Error handling can be improved, as related to Issue A. It is not a recommended practice to pass on all
exceptions because a large number of exceptions can be a sign of an attack on the system.

Offer decoding (from_bech32) is expected to throw a ValueError: Invalid offer exception.
However, other errors during Offer decoding and decompression within that function are not caught and
handled (see Issue B).

Mitigation

We recommend logging errors to identify possible attacks. For specific exceptions that commonly occur
during normal operations, we recommend utilizing a typed except block.

Security Audit Report | Offers Primitive | Chia Network 8
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/action_manager/action_aliases.py
https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/trading/offer.py#L150-L151
https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/action_manager/protocols.py#L294-L298

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Suggestion 4: Increase Test Coverage

Synopsis

The Chia team utilizes integration testing to test Offer functionalities. While integration testing is a good
approach to test that components work together correctly, testing individual components is essential to
test for correct behavior early and often, as well as for performing regression testing. Individual tests (e.g.
unit tests) require much less resources and can be run quickly.

Mitigation

We recommend testing the components of the Offer system individually with, for example,
property-based tests.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Suggestion 5: Refactor Code To Improve Input Validation, Ease of Testing

Location

Example (non-exhaustive):

chia/wallet/trading/offer.py#L437-L535

Synopsis

Separating different functionalities into different functions makes it easier to test certain functions
individually and to understand the code for maintaining or auditing. In the Chia wallet codebase, there are
many functions that perform different operations on input. For example, to_valid_spend in offer.py
could consist of various parts. In addition, the serialization of the offered coins and the creation of the
solution could be integrated into different functions and thereby tested separately.

Mitigation

We recommend the separation of concerns and loose coupling to simplify the testing process and
improve code readability.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Security Audit Report | Offers Primitive | Chia Network 9
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/trading/offer.py#L437-L535

Suggestion 6: Perform Property-Based Testing on Decoding / Parsing
Functionalities

Synopsis

Property-based testing allows for testing a large number of inputs and edge cases that would be
impractical to test manually. Furthermore, defining properties that the code should uphold can benefit the
development process, as well as help uncover bugs. Property-based testing can also run as part of CI and
help ensure that properties still hold even after code changes.

Mitigation

We recommend that the Chia team look into property-based testing, for example, for the Offer
functionality, or correct the behavior of trade and action manager. This could be done by utilizing
hypothesis, which our research team referred to in order to uncover inputs that could lead to unwanted
behavior.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Suggestion 7: Resolve TODOs in Codebase

Location

Examples (non-exhaustive):

chia/wallet/nft_wallet/nft_wallet.py#L617

chia/wallet/nft_wallet/nft_wallet.py#L798

chia/wallet/trade_manager.py#L922

Synopsis

There are many unresolved TODO items in the code comments of the in-scope files, which may lead to a
lack of clarity and cause confusion about the completion of the implementation. Resolving TODOs prior to
a comprehensive security audit of the code allows security researchers to better understand the full
intended functionality of the code, indicates completion, and increases readability and comprehension.

However, note that resolving these TODOs could result in changes to the code, which might have an
impact on the security of the project that is unpredictable at the time of the audit.

Mitigation

We recommend that TODOs be resolved or removed from the codebases.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Security Audit Report | Offers Primitive | Chia Network 10
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://hypothesis.readthedocs.io/en/latest/
https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/nft_wallet/nft_wallet.py#L617
https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/nft_wallet/nft_wallet.py#L798
https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/trade_manager.py#L922

Suggestion 8: Improve Code Comments

Location

Examples (non-exhaustive):

chia/wallet/trading/offer.py#L464-L635

chia/wallet/trading/offer.py#L464-L635

chia/wallet/trade_manager.py#L935-L1017

Synopsis

Currently, the codebase lacks explanation in some areas. This reduces the readability of the code and, as
a result, makes reasoning about the security of the system more difficult. Comprehensive in-line
documentation explaining, for example, expected function behavior and usage, input arguments,
variables, and code branches can greatly benefit the readability, maintainability, and auditability of the
codebase.

Mitigation

We recommend expanding and improving the code comments within the codebase to facilitate reasoning
about the security properties of the system.

Status

At the time of the verification, the suggested mitigation has not been resolved.

Verification

Unresolved.

Security Audit Report | Offers Primitive | Chia Network 11
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Chia-Network/blob/a3d2f8ef630039e6177e0414decd9bee23fa6b22/chia/wallet/trading/offer.py#L464-L635
https://github.com/LeastAuthority/Chia-Network/blob/main/chia/wallet/trading/offer.py#L464-L635
https://github.com/LeastAuthority/Chia-Network/blob/a3d2f8ef630039e6177e0414decd9bee23fa6b22/chia/wallet/trade_manager.py#L935-L1017

Appendix

Appendix A: Invalid Offer Example
The following input can be successfully created as an Offer object, en- and decoded to and from Bech32
and then still fail when the get_coins_to_offer function is called on it, for example. This is one of the
examples generated using specialized hypothesis strategies that causes failures on a seemingly valid
Offer object.

Offer(

requested_payments={None: []},

_bundle=SpendBundle(

coin_spends=[CoinSpend(

coin=Coin(

parent_coin_info=<bytes32:
00>,

puzzle_hash=<bytes32:
00>,

amount=1,

),

puzzle_reveal=SerializedProgram(00),

solution=SerializedProgram(80),

)],

aggregated_signature=<G2Element
c000
00
000000000000000000000000000000000000>,

),

driver_dict={<bytes32:
00>: PuzzleInfo(

info={'type': <bytes32:
00>,

'also': <bytes32:
00>},

),

None: PuzzleInfo(

Security Audit Report | Offers Primitive | Chia Network 12
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

info={'type': <bytes32:
00>,

'also': <bytes32:
00>},

)},

)

Security Audit Report | Offers Primitive | Chia Network 13
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Offers Primitive | Chia Network 14
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Offers Primitive | Chia Network 15
20 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

