
Secret Shared Validator (SSV)
Security Audit Report

Blox
Updated Final Audit Report: 21 September 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Validity of Event Data Received by handleValidatorAddedEvent Is Not Checked

Issue B: Missing Validation on OperatorIds Array Size

Issue C: Unsafe Dependency Used

Issue D: Blox Node Does Not Sync With Contract

Issue E: Event Handler Ignores Errors in Executing Duty or Timeout Handlers

Issue F: Missing Check on Quorum for the RoundChange Justification

Suggestions

Suggestion 1: Improve Error Handling, Limit and Avoid Using Panics

Suggestion 2: Check That Type Assertion Succeeds

Suggestion 3: Prevent Badger InMemory From Running in Production

Suggestion 4: Fix Incorrect Throttling Implementation

Suggestion 5: Resolve TODOs in the Codebase

Suggestion 6: Update Outdated Dependencies

Suggestion 7: Specify the Versions of Installed Libraries

About Least Authority

Our Methodology

Security Audit Report | Secret Shared Validator (SSV) | Blox 1
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Blox has requested that Least Authority perform a security audit of their Secret Shared Validator (SSV), an
implementation based on the Istanbul BFT Consensus Algorithm paper, and written in Go.

Project Dates
● April 6, 2023 - May 11, 2023: Initial Code Review (Completed)
● May 15, 2023: Delivery of Initial Audit Report (Completed)
● August 10, 2023: Delivery of the Updated Initial Audit Report (Completed)
● August 21, 2023 - August 23, 2023: Verification Review (Completed)
● August 23, 2023: Delivery of Final Audit Report (Completed)
● August 10, 2023 - August 28, 2023: Additional Review (Completed)
● August 29, 2023: Delivery of Updated Final Audit Report (Completed)
● September 21, 2023: Delivery of Updated Final Audit Report (Completed)

Review Team
● Shareef Maher Dweikat, Security Research and Engineer
● Nathan Ginnever, Security Researcher and Engineer
● Jasper Hepp, Security Researcher and Engineer
● Nikos Iliakis, Security Researcher and Engineer
● ElHassan Wanas, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Secret Shared Validator (SSV)
followed by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Bloxapp/ssv:

https://github.com/bloxapp/ssv/tree/spec-align-qbft

Specifically, we examined the Git revision for our initial review:

● 0d8397c0192b2e832c147753a2941e8b90d94e30

For the verification, we examined the Git revision:

● 8431edf5e6b8f87c022762d59a3946acb350811f

For the review, this repository was cloned for use during the audit and for reference in this report:

● Bloxapp/ssv:
https://github.com/LeastAuthority/blox-ssv-implementation

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | Secret Shared Validator (SSV) | Blox 2
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/bloxapp/ssv/tree/spec-align-qbft
https://github.com/LeastAuthority/blox-ssv-implementation

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● H. Moniz, "The Istanbul BFT Consensus Algorithm." arXiv ePrint Archive, 2020, [Moniz20]
● Blog post, “An Introduction to Secret Shared Validators (SSV) for Ethereum 2.0”:

https://medium.com/bloxstaking/an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-
0-faf49efcabee

In addition, this audit report references the following documents:
● QBFT Presentation for the EEA:

https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20
the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2

● QBFT Formal verification repository by Roberto Saltini:
https://github.com/ConsenSys/qbft-formal-spec-and-verification

● SSVNetwork:
https://docs.ssv.network/developers/smart-contracts/ssvnetwork#public-registervalidator-public
key-operatorids-shares-amount-cluster

● Type assertions:
https://go.dev/ref/spec#Type_assertions

● CompareAndSwap:
https://pkg.go.dev/sync/atomic#Value.CompareAndSwap

● Blox SSV specification repository:
https://github.com/bloxapp/ssv-spec

● Ethereum 2.0 Specification:
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md

● Blox eth2-key-manager:
https://github.com/bloxapp/eth2-key-manager/tree/master/slashing_protection

● Attacks and weaknesses of BLS aggregate signatures:
https://eprint.iacr.org/2021/377.pdf

● BLS Multi-Signatures With Public-Key Aggregation:
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

● Blox SIP ECIES Share Encryption:
https://github.com/bloxapp/SIPs/blob/main/sips/ecies_share_encryption.md

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation for both the cryptography and consensus code;
● Common and case-specific implementation errors;
● Communication and interactions between network components;
● Adversarial actions and other attacks on the network;
● Attacks intending to misuse resources, cause unintended forks, and create unwanted or

adversarial chains;
● Resistance to denial of service (DoS) and similar attacks;
● Investigation of operations and potential mismanagement of funds;
● Any attack that impacts funds, such as the draining or manipulation of funds;
● Protection against malicious attacks and other types of exploitation;
● Inappropriate permissions and excess authority;

Security Audit Report | Secret Shared Validator (SSV) | Blox 3
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://arxiv.org/pdf/2002.03613.pdf
https://medium.com/bloxstaking/an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee
https://medium.com/bloxstaking/an-introduction-to-secret-shared-validators-ssv-for-ethereum-2-0-faf49efcabee
https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2
https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2
https://github.com/ConsenSys/qbft-formal-spec-and-verification
https://docs.ssv.network/developers/smart-contracts/ssvnetwork#public-registervalidator-publickey-operatorids-shares-amount-cluster
https://docs.ssv.network/developers/smart-contracts/ssvnetwork#public-registervalidator-publickey-operatorids-shares-amount-cluster
https://go.dev/ref/spec#Type_assertions
https://pkg.go.dev/sync/atomic#Value.CompareAndSwap
https://github.com/bloxapp/ssv-spec
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md
https://github.com/bloxapp/eth2-key-manager/tree/master/slashing_protection
https://eprint.iacr.org/2021/377.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://github.com/bloxapp/SIPs/blob/main/sips/ecies_share_encryption.md

● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Blox Secret Shared Validator (SSV) builds a distributed validator technology (DVT) intended to
decentralize the control of an Ethereum validator node. Our team performed a comprehensive review of
the Blox SSV implementation. In our review, we compared the Blox SSV implementation to the Blox SSV
specification that integrates improvements to IBFT2.0, which are detailed in this presentation, and
specified in the QBFT formal verification repository.

In addition to the areas of concern listed above, we investigated specific security issues and concerns
highlighted by the Blox Team. Specifically, our team examined denial of service attack vectors as well as
the usage of libp2p at the underlying gossip protocol layer of the validator subnet, and did not identify any
issues in the adherence of the implementation to the specification.

We also examined the deviation from the specification repository. The core of the consensus protocol
closely follows the Blox SSV Specification (previously audited by Least Authority) and only adds logging,
metrics, and improvements for the storing of messages. As such, we did not identify any new security
vulnerabilities. However, the Issues from our previous report transfer partially to this report. In particular,
Issue A from the previous report also applies to this codebase and must be remediated in this context as
well (Issue F). An issue risking the liveness of the pre-consensus protocol has been found by Blox
(documented here) and has been fixed in the latest version of the code.

We verified the alignment with the Ethereum 2.0 specification, in particular with the slashing conditions
for validators. The Blox SSV depends on the slashing conditions implemented in the Blox
eth2-key-manager repository. These conditions are stricter than the Ethereum 2.0 slashing conditions
for reasons of efficiency. We did not find any issue with this approach, especially with regards to falsely
accepting any slashable attestations – that is, the set of accepted attestations is a subset of the set of
valid attestations defined in the Ethereum 2.0 specification. Tests to verify this are specified in a PR.

Our team identified areas of improvement within the system’s implementation that would improve the
security of Blox SSV, if resolved. We recommend that error handling be improved by avoiding the use of
panics (Suggestion 1). During our review, we identified patterns of missing event validations within the
codebase. We looked at the smart contracts’ event handling and found that there are no checks verifying
the validity of the data received from events, which could result in DoS attack vectors (Issue A, Issue B). In
adding new validators, a bad actor can fill any number of events with trash data and consume node
resources to fill up the storage.

Blox uses the Boneh Lynn Shacham (BLS) cryptography scheme to split the validator key among
independent operators. We have checked the security of the scheme against attacks mentioned in both
the the “Attacks and weaknesses of BLS aggregate signatures” paper and the “BLS Multi-Signatures With
Public-Key Aggregation” paper, but since the public keys of the operators are registered on-chain, we did
not find any attack against the Blox system. In addition, as noted in our previous audit report, we
recommend replacing RSA, the encryption scheme for the validator shares, with ECIES encryption scheme
to ensure a security level of 128 bits. This has not been implemented yet but is an approved improvement
proposal SIP and expected to be added soon.

Security Audit Report | Secret Shared Validator (SSV) | Blox 4
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://wiki.hyperledger.org/download/attachments/58855126/QBFT%20Presentation%20for%20the%20EEA%20%281%29.pdf?version=1&modificationDate=1633120327000&api=v2
https://github.com/ConsenSys/qbft-formal-spec-and-verification
https://github.com/bloxapp/ssv-spec
https://github.com/bloxapp/SIPs/blob/main/sips/pre_consensus_livness.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md
https://github.com/bloxapp/eth2-key-manager/tree/master/slashing_protection
https://github.com/bloxapp/ssv/pull/1113
https://eprint.iacr.org/2021/377.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://github.com/bloxapp/SIPs/blob/main/sips/ecies_share_encryption.md

Code Quality
Our team found that Blox SSV’s codebase is well-organized and generally adheres to best practice
guidelines. However, we identified some instances of missing type assertion checks that could cause a
panic. We recommend that a check be implemented (Suggestion 2).

Tests

There are sufficient tests implemented. In our examination of a node’s initializing code, we found code
written for use in tests only or in the development environment, which could be harmful if kept in the
production release (Issue D, Suggestion 3).

Documentation
The project documentation provided for this specification review was sufficient and offered an accurate
description of the system.

Code Comments

Generally, we found the code to be well-organized. However, there are multiple instances of unresolved
TODOs and some instances of unused code comments, which may create confusion about the intended
functionality and completeness of the implementation. This could potentially result in errors or missed
vulnerabilities by developers and security researchers. As a result, we recommend resolving all TODOs
(Suggestion 5) and removing unused code from the codebase.

Scope
The scope of this review included all security-critical components of the application. In our review, we
compared the Quorum Byzantine Fault Tolerance (QBFT) implementation to the specification in the QBFT
folder in the Blox SSV specification, per our previous review. Furthermore, during this audit, our team
compared the Blox SSV Specification to the Blox SSV Implementation.

Dependencies

Our team identified a library used in the implementation that could cause unintended behavior (Issue C).
We also found several unmaintained dependencies that could lead to the introduction of vulnerabilities
and bugs into the codebase. We recommend using up-to-date, well-maintained libraries (Suggestion 6).
The suggestion is

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Validity of Event Data Received by handleValidatorAddedEvent Is
Not Checked

Resolved

Issue B: Missing Validation on OperatorIds Array Size Resolved

Issue C: Unsafe Dependency Used Resolved

Issue D: Blox Node Does Not Sync With Contract Resolved

Security Audit Report | Secret Shared Validator (SSV) | Blox 5
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ConsenSys/qbft-formal-spec-and-verification

Issue E: Event Handler Ignores Errors in Executing Duty or Timeout Handlers Resolved

Issue F: Missing Check on Quorum for the RoundChange Justification Resolved

Suggestion 1: Improve Error Handling, Limit and Avoid Using Panics Resolved

Suggestion 2: Check That Type Assertion Succeeds Resolved

Suggestion 3: Prevent Badger InMemory From Running in Production Resolved

Suggestion 4: Fix Incorrect Throttling Implementation Resolved

Suggestion 5: Resolve TODOs in the Codebase Unresolved

Suggestion 6: Update Outdated Dependencies Partially Resolved

Suggestion 7: Specify the Versions of Installed Libraries Resolved

Issue A: Validity of Event Data Received by handleValidatorAddedEvent Is
Not Checked

Location

operator/validator/event_handler.go#L32

Synopsis

The smart contract’s registerValidator function can be used to trigger events. However, the validity
of the event data received by the handleValidatorAddedEvent function is not checked. As a result, a
malicious actor can send multiple ValidatorAddedEvent events and add several invalid (nonexistent)
validators. The unchecked data is stored in the smart contract and an event is emitted to operator nodes.

Impact

The function does not check for the validity of the passed event’s data. Consequently, if the storage is
limited, the node can be overloaded, which results in legitimate validators not being added.

This Issue could also be exploited for DoS attacks that could potentially bring the server down.

Preconditions

The storage capacity of the server must be limited for an attacker to be able to overload it with invalid
validators.

For DOS attacks, no preconditions are needed.

Feasibility

Straightforward.

Remediation

We recommend checking the validity of the ValidatorAddedEvent event’s validator. We also
recommend setting maximum limits for the number of validators that can be added per unit of time, and
based on the storage capacity of the server.

Security Audit Report | Secret Shared Validator (SSV) | Blox 6
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/operator/validator/event_handler.go#L32
https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/

Status

The Blox team stated that such attacks (DoS attacks and overloading the server with invalid validators)
are unlikely, as they would be very expensive to execute. The malicious actor would have to pay a
transaction fee for every invalid validator they want to add.

Verification

Resolved.

Issue B: Missing Validation on OperatorIds Array Size

Location

operator/validator/utils.go#L60

Synopsis

There is no validation performed for the array size of OperatorIds. A malicious actor could perform a
DoS attack by sending a large array size in, for example, a ValidatorAddedEvent event, causing the
loop to run for a long period of time. Alternatively a numerous number of events could be sent with a
normal array size (Issue A), creating a DoS attack vector. The smart contract’s registerValidator
function can be used to trigger such an event. Alternatively, an attacker can find a way to send an event to
the Blox node using another compromised function or without even going through the smart contract at
all.

Impact

Enough requests can deplete the server’s resources and cause unintended behavior.

Feasibility

Straightforward.

Remediation
We recommend adding a check to verify that arrays are not larger than the smart contract's
registerValidator function standard (13 operators).

Status

The Blox team has added a check to prevent the operator's array length from exceeding 13 items.

Verification

Resolved.

Issue C: Unsafe Dependency Used

Location

blob/master/go.mod

Synopsis

During our manual review of the codebase, our team found that the Decoder function of the gob package
is being used. The Decoder function only performs basic sanity checks on decoded input sizes.

Security Audit Report | Secret Shared Validator (SSV) | Blox 7
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/operator/validator/utils.go#L60
https://docs.ssv.network/developers/smart-contracts/ssvnetwork#public-registervalidator-publickey-operatorids-shares-amount-cluster
https://github.com/LeastAuthority/blox-ssv-implementation/blob/master/go.mod

Impact

If an input with a large size is passed to the function, it may deplete the server's resources and cause
unintended behavior.

Remediation

We recommend wrapping the Decoder function with a condition to set a maximum size for inputs.

Status

The Blox team has added a limit on the input size that is passed to the Decoder function.

Verification

Resolved.

Issue D: Blox Node Does Not Sync With Contract

Location

cli/operator/node.go#L149

Synopsis

In the development environment, the Blox node retrieves events from a local file (for testing purposes)
instead of syncing with the smart contract. The code does not check the environment in which it is
running, rather only uses the file, if it is available. If the file gets deployed to the production server, the
node will not sync with the smart contract.

Impact

Actions taken due to unintended or malicious events could prevent the network and the consensus
protocol from functioning as intended.

Preconditions

For this Issue to occur, the events file should be deployed to the server.

Feasibility

If the precondition is met, it would be relatively straightforward to execute the attack.

Remediation

We recommend restricting the loading of the local events file to the development environment by
wrapping it with a condition.

Status

The Blox team has added a flag in newly created databases that indicates whether the local file is set. If
the node is restarted with values different from what is persisted, it would crash with an error.

Verification

Resolved.

Security Audit Report | Secret Shared Validator (SSV) | Blox 8
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blox-ssv-implementation/blob/master/cli/operator/node.go#L149

Issue E: Event Handler Ignores Errors in Executing Duty or Timeout
Handlers

Location

protocol/v2/ssv/validator/events.go#L23

protocol/v2/ssv/validator/events.go#L29

Synopsis

As part of processing a network message, the handleEventMessage function is called, which in turn
calls the respective handler either for validating or handling a timeout. These handlers could return an
error. However, such an error would only be logged instead of being propagated to the message
processing function that called it. This could lead to the loss of messages, and logs, unnoticed with the
exception of the logs.

Impact

This Issue could result in a false positive on messages that have failed to be processed successfully.

Remediation

In case of an error, we recommend returning the error received from the OnTimeout or OnExecuteDuty
functions from the handleEventMessage.

Status

The Blox team has implemented the remediation as recommended.

Verification

Resolved.

Issue F: Missing Check on Quorum for the RoundChange Justification

Location

protocol/v2/qbft/instance/prepare.go#L84-L97

dafny/spec/L1/node_auxiliary_functions.dfy#L673

Synopsis

The function getRoundChangeJustification in the qbft/instance/prepare.go file does not
check that the set of constructed Preparemessages is of size quorum. This is a deviation from the
QBFT formal verification code, and the Issue has been also previously reported in an audit on the Blox
SSV specification.

Impact

Low. The function returns a set of valid Preparemessages that is attached to a RoundChangemessage
to justify the round change by the operator. As specified in the QBFT code, the operator needs to check
the size of the set here. Not checking this can lead to sending a RoundChangemessage that is not
accepted by other operators, which could, in turn, lead to liveness issues. Since the proposer for a higher
round requires quorum-many valid RoundChangemessages, this can lead to a state in which the
operators do not find consensus, and liveness is not reached.

Security Audit Report | Secret Shared Validator (SSV) | Blox 9
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blox-ssv-implementation/blob/master/protocol/v2/ssv/validator/events.go#L23
https://github.com/LeastAuthority/blox-ssv-implementation/blob/master/protocol/v2/ssv/validator/events.go#L29
https://github.com/bloxapp/ssv/blob/c551f7304b62c32cd63a8260e13edb29532528f3/protocol/v2/qbft/instance/prepare.go#L84-L97
https://github.com/ConsenSys/qbft-formal-spec-and-verification/blob/1630128e7f5468c08983d08064230422d9337805/dafny/spec/L1/node_auxiliary_functions.dfy#L673

Preconditions

In order for this Issue to occur, an operator has to perform a round change. In addition, the operator
should have reached the Prepare stage, during which the operator receives quorum-many Prepare
messages, and sets the values LastPreparedValue and LastPreparedRound prior to the round
change.

Feasibility

The requirement of having received quorum-many Preparemessages makes the scenario unlikely, and
it is difficult to exploit the missing check for an attack.

Remediation

We recommend adding the check.

Status

The Blox team has implemented the HasQuorum function from the QBFT package to verify whether
quorum size is reached.

Verification

Resolved.

Suggestions

Suggestion 1: Improve Error Handling, Limit and Avoid Using Panics

Location

blox-ssv-implementation/operator/fork.go

Synopsis

There are multiple instances in the code that would trigger a panic in case of an error. Functions that can
cause the code to panic at runtime may lead to denial of service.

Mitigation

We recommend refactoring the code and removing panics where possible. One of the possible
improvements is to propagate errors to the caller and handle them on the upper layers. Note that error
handling does not exclude using panics. In addition, if a caller can return an error, the callee function may
not panic but, instead, propagate an error to the caller.

Status

The Blox team has refactored the code to return fmt.Errorf error objects instead of triggering a panic.

Verification

Resolved.

Suggestion 2: Check That Type Assertion Succeeds

Location

operator/validator/event_handler.go

Security Audit Report | Secret Shared Validator (SSV) | Blox 10
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/operator/fork.go#L34
https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/operator/validator/event_handler.go#L25

Synopsis

The code in the function Eth1EventHandler does not check that type assertion holds. In the case that
type assertion is false, a runtime panic can occur.

Mitigation

We recommend that a check be added to verify that type assertion holds.

Status

The Blox team has removed type assertions that could cause panics.

Verification

Resolved.

Suggestion 3: Prevent Badger InMemory From Running in Production

Location

storage/main.go#L17

storage/kv/badger.go#L42

Synopsis

Tests can instantiate Badger with InMemorymode. In this mode, all data is stored in memory, not disk.
Although reads and writes will be faster this way, if the node shuts down, all data will be lost. While such a
mode is acceptable to use in tests, it is not recommended in production. Usually, memory capacity is
much smaller and more expensive than the disk’s capacity.

If the node is launched on production with InMemory set to true by accident, all the data will be loaded
to the memory, making the node slower due to the filled up memory, or even resulting in the nodes
potentially crashing if the memory is depleted completely.

Mitigation

We recommend only instantiating Badger with InMemorymode inside test files. Alternatively, we
recommend wrapping the instantiating code with a condition to prevent it from running in the production
environment.

Status

The Blox team has moved the InMemorymode logic into a special function called NewInMemory that
can be called by test files.

Verification

Resolved.

Suggestion 4: Fix Incorrect Throttling Implementation

Location

network/syncing/syncer.go

Synopsis

The syncing package contains a function that is intended to be used to throttle calls to an underlying
function, such that the function is called at most once during a given time period. Our team found that the

Security Audit Report | Secret Shared Validator (SSV) | Blox 11
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://go.dev/ref/spec#Type_assertions
https://github.com/bloxapp/ssv/blob/1862d4123582b6176379058c8de546d689b9135b/storage/main.go#L17
https://github.com/bloxapp/ssv/blob/1862d4123582b6176379058c8de546d689b9135b/storage/kv/badger.go#L42
https://github.com/LeastAuthority/blox-ssv-implementation/blob/master/network/syncing/syncer.go#L38

implementation of this function is not thread-safe, which allows multiple calls to occur within a given time
period. This might allow for race conditions or other concurrency-related issues.

Mitigation

We recommend implementing CompareAndSwap in the Throttle implementation to do a swap, only if
the time stored in the pointer has not changed after the call to time.Sleep.

If the value has changed, the subsequent handler call must wait. This can be achieved by repeatedly
trying CompareAndSwap until it returns true.

Status

The Blox team has removed the Throttle function because it was not being utilized.

Verification

Resolved.

Suggestion 5: Resolve TODOs in the Codebase

Location

network/peers/conn_manager.go#L63

network/discovery/service.go#L18

network/discovery/subnets.go#L12

identity/store.go#L15

Synopsis

Our team identified several instances of unresolved TODOs. Unresolved TODOs decrease code readability
and may create confusion about the completeness of the protocol and the intended functionality of each
of the system components. This can hinder the ability for security researchers to identify implementation
errors.

Mitigation

We recommend identifying and resolving all pending TODOs in the codebase.

Status

The Blox team stated that they plan on implementing the suggested mitigation in the future. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 6: Update Outdated Dependencies

Synopsis

Analyzing go.mod for dependency versions using go list -json -m all | nancy sleuth
showed that there are 13 vulnerable dependencies in the project. In addition, running go list -u -m
-json all | go-mod-outdated -direct revealed a total of 42 outdated dependencies.

Security Audit Report | Secret Shared Validator (SSV) | Blox 12
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://pkg.go.dev/sync/atomic#Value.CompareAndSwap
https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/network/peers/conn_manager.go#L63
https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/network/discovery/service.go#L18
https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/network/discovery/subnets.go#L12
https://github.com/LeastAuthority/blox-ssv-implementation/blob/0d8397c0192b2e832c147753a2941e8b90d94e30/identity/store.go#L15

Using outdated or vulnerable dependencies exposes the system to attacks that could result in the
exfiltration of sensitive data.

Remediation

We recommend following a process that emphasizes secure dependency usage to avoid introducing
vulnerabilities to the Blox Implementation and to mitigate supply-chain attacks, which includes:

● Manually reviewing and assessing currently used dependencies;
● Upgrading dependencies with known vulnerabilities to patched versions with fixes;
● Replacing unmaintained dependencies with secure and battle-tested alternatives, if possible;
● Pinning dependencies to specific versions, including pinning build-level dependencies in the

go.mod file to a specific version;
● Only upgrading dependencies upon careful internal review for potential backward compatibility

issues and vulnerabilities; and
● Including Automated Dependency auditing reports in the project’s CI/CD workflow.

Status

The Blox team upgraded Prysm and go-ethereum to resolve the vulnerabilities. Running the commands
still shows 5 vulnerable packages imported by the latest version of Prysm and go-ethereum, though no fix
is available for them at the time of the verification.

Verification

Partially Resolved.

Suggestion 7: Specify the Versions of Installed Libraries

Location

blob/master/Dockerfile#L52

Synopsis

Unpinned versions in the Dockerfile can lead to failure of the build due to library updates.

Mitigation

We recommend specifying the versions of any used libraries.

Status

The Blox team has implemented the mitigation as recommended.

Verification

Resolved.

Security Audit Report | Secret Shared Validator (SSV) | Blox 13
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blox-ssv-implementation/blob/master/Dockerfile#L52

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Secret Shared Validator (SSV) | Blox 14
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Secret Shared Validator (SSV) | Blox 15
21 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

