
Masca MetaMask Snap
Security Audit Report

Blockchain Lab
Final Audit Report: 6 September 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Zero-fill Buffers Are Used To Hold Secrets

Issue B: The Crypto Subtle Key Is Marked as Extractable

Issue C: Users Can Still Execute Security-Critical Actions Without Being Prompted

Issue D: The Key Utilized for the Encryption Does Not Meet Security Best Practice Requirements

Suggestions

Suggestion 1: Improve Error Handling and Reporting

Suggestion 2: Sanitize, Filter, or Escape Before Validating

Suggestion 3: Host Instance of Universal Resolver

Suggestion 4: Update and Maintain Dependencies

Suggestion 5: Avoid Using console.log

About Least Authority

Our Methodology

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 1
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Blockchain Lab has requested that Least Authority perform a security audit of their Masca MetaMask
Snap.

Project Dates
● August 14, 2023 - August 23, 2023: Initial Code Review (Completed)
● August 25, 2023: Delivery of Initial Audit Report (Completed)
● September 5: Verification Review (Completed)
● September 6: Delivery of Final Audit Report (Completed)

Review Team
● Jehad Baeth, Security Researcher and Engineer
● Xenofon Mitakidis, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Masca MetaMask Snap followed by
issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repository is considered in scope for the review:
● Blockchain Lab Masca MetaMask Snap:

https://github.com/blockchain-lab-um/masca

Specifically, we examined the Git revision for our initial review:

● 60865a14936351a18ac0b8db06824f1c3038ddc3

For the verification, we examined the Git revision:

● a9cce8e50db942744799e0d9396d69703f5ed37f

For the review, this repository was cloned for use during the audit and for reference in this report:

● Blockchain Lab Masca MetaMask Snap:
https://github.com/LeastAuthority/blockchain-lab-masca-snap

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Project website:
https://www.masca.io

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 2
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/blockchain-lab-um/masca
https://github.com/LeastAuthority/blockchain-lab-masca-snap
https://www.masca.io/

● Company website:
https://blockchain-lab.um.si/?lang=en

● Introducing Masca (prev. SSI Snap):
https://medium.com/@blockchainlabum/introducing-masca-prev-ssi-snap-ba86023ec8

● Masca Docs:
https://www.docs.masca.io

In addition, this audit report references the following documents:
● A. Biryukov, D. Khovratovich, and S. Josefsson, “The memory-hard Argon2 password hash and

proof-of-work function.” Crypto Forum Research Group, 2020, [BKJ20]
● argon2-browser:

https://github.com/antelle/argon2-browser
● PBKDF2:

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the Snap implementation;
● Potential misuse and gaming of the Snap;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Adversarial actions and other attacks on the network;
● Denial of Service (DoS) and other security exploits that would impact the intended use of the

Snap or disrupt the execution of the Snap capabilities;
● Vulnerabilities in the Snap code;
● Protection against malicious attacks and other ways to exploit the Snap code;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Our team conducted a comprehensive security review of Masca, a MetaMask extension that aims to
integrate decentralized identity management, specifically Decentralized Identifiers (DIDs) and Verifiable
Credentials (VCs), into the MetaMask ecosystem. We investigated the coded implementation to identify
security vulnerabilities and implementation errors and reviewed Masca’s utilization of the MetaMask
security framework and adherence to the security best practices.

Our team found that security has been taken into consideration in Masca’s current implementation and
design. However, we identified several issues and suggestions that would improve the overall security of
the implementation.

System Design
Our team found that zero-fill Buffers are used to hold secrets, whereas best practice recommends
zero-filling buffers containing sensitive information after usage (Issue A). Additionally, we identified a
number of Issues relating to encryption and the handling of keys (Issue B, Issue D).

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 3
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://blockchain-lab.um.si/?lang=en
https://medium.com/@blockchainlabum/introducing-masca-prev-ssi-snap-ba86023ec85
https://www.docs.masca.io/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-10#section-4
https://github.com/antelle/argon2-browser
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2

We also found an instance of an incorrect implementation of force boolean, whereby users could perform
critical actions without being warned (Issue C). Furthermore, we reviewed input validation and error
handling and identified several areas of improvement (Suggestion 1, Suggestion 2).

Code Quality
We performed a manual review of the repositories in scope and found the codebases to be generally
organized and well-written.

Tests

Our team found sufficient test coverage of the Masca MetaMask Snap has been implemented.

Documentation
The project documentation provided for this review provides a sufficient overview of the system and its
intended behavior.

Code Comments

We found that the implementation is sparsely but sufficiently commented, with code comments generally
describing the intended behavior of security-critical components and functions.

Scope
The scope of this review was sufficient and included all security-critical components. However, our
findings show that the Masca MetaMask Snap is still in early stages of implementation and that some of
the libraries and services implemented in the Snap are in an experimental phase as well.

Dependencies

We examined all the dependencies implemented in the codebase and identified some instances of
vulnerable dependencies and several instances of unused dependencies and devDependencies. We
recommend improving dependency management (Suggestion 4).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Zero-fill Buffers Are Used To Hold Secrets Resolved

Issue B: The Crypto Subtle Key Is Marked as Extractable Resolved

Issue C: Users Can Still Execute Security-Critical Actions Without Being
Prompted

Resolved

Issue D: The Key Utilized for the Encryption Does Not Meet Security Best
Practice Requirements

Partially Resolved

Suggestion 1: Improve Error Handling and Reporting Resolved

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 4
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 2: Sanitize, Filter, or Escape Before Validating Resolved

Suggestion 3: Host Instance of Universal Resolver Resolved

Suggestion 4: Update and Maintain Dependencies Resolved

Suggestion 5: Avoid Using console.log Resolved

Issue A: Zero-fill Buffers Are Used To Hold Secrets

Location

snap/src/Encryption.service.ts#L19

snap/src/Encryption.service.ts#L57

Synopsis

When using the Buffer number constructor, memory space is reserved without initializing it with zeroes.
Instead, the allocated buffer retains whatever data was present in memory at that moment.

Impact

This Issue could result in the leakage of sensitive data.

Technical Details

The content of the newly created Buffer will be the residual of whatever value was held by that memory
space before, if not zero-filled.

Remediation

We recommend always zero-filling Buffers that contain sensitive information or secrets after usage.

Status

The Blockchain Lab team has implemented the recommended remediation.

Verification

Resolved.

Issue B: The Crypto Subtle Key Is Marked as Extractable

Location

snap/src/Encryption.service.ts#L24C7-L24C11

snap/src/Encryption.service.ts#L58

Synopsis

The flag that allows the keys to be exported is set to true. As a result, the crypto subtle key is marked as
extractable. Our team did not observe any use case that may call for exporting the CryptoKey. Therefore,
allowing it to be exported unnecessarily opens a new attack vector.

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 5
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/Encryption.service.ts#L19
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/Encryption.service.ts#L57
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/Encryption.service.ts#L24C7-L24C11
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/Encryption.service.ts#L58

Impact

This Issue can result in the leakage of sensitive data and secrets.

Remediation

We recommend turning the key into an unextractable to reduce the attack vector here and here.

Status

The Blockchain Lab team has implemented the recommended remediation.

Verification

Resolved.

Issue C: Users Can Still Execute Security-Critical Actions Without Being
Prompted

Location

snap/src/UI.service.ts#L50

snap/src/UI.service.ts#L29

Synopsis

The implementation uses force boolean to prevent users from circumventing displayed pop-ups for even
friendly applications selected by the user. However, it is not used in any of the snapConfirm or
snapAlert calls.

Impact

This Issue can lead to users executing security-critical actions without being prompted.

Remediation

We recommend that force booleans be used for critical actions, such as the state export.

Status

The Blockchain Lab team has updated the implementation to force a notification display and obtain user
consent even when notifications are turned off by the user for friendly dApps.

Verification

Resolved.

Issue D: The Key Utilized for the Encryption Does Not Meet Security Best
Practice Requirements

Location

snap/src/Encryption.service.ts#L20

Synopsis

Our team found that the entropy provided by MetaMask’s snap_getentropy is being used directly as a
secret value for an AES-GCM encryption in which the key derivation function is not utilized.

A key derivation function turns any source of entropy into a key in a deterministic and secure manner and

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 6
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/Encryption.service.ts#L24C7-L24C11
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/Encryption.service.ts#L58
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/UI.service.ts#L50
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/UI.service.ts#L29
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/develop/packages/snap/src/Encryption.service.ts#L20

increases resistance to a variety of password-cracking attacks, such as brute-force attacks. Using a key
derivation function (KDF) is generally recommended for better security and key management.

Impact

The strength of the encryption algorithm could be compromised, making the system more susceptible to
password cracking attacks, such as brute-force attacks.

Remediation

For deriving a key from the entropy, we recommend utilizing the Argon2id function library implemented
with a memory parameter of 64 MB, and following the recommendations explained in [BKJ20].
Additionally, an iteration count (called OPSLIMIT by sodium) of 3 should be used. It is important to note
that a longer processing time provides better protection against brute-force attacks.

Mitigation

If the Blockchain Lab team is unable to use Argon2 then, as a last resort, we recommend using PBKDF2 to
derive secret values from user-supplied passwords, in accordance with the OWASP recommendations.

Status

The Blockchain Lab team stated that they faced some issues when integrating Argon2id into their
systems and therefore chose to use PBKDF2. Additionally, the team increased the iterations by six times
from the default of 100K.
However, our team recommends that the Blockchain Lab team continue to monitor the security of
PBKDF2 and switch to stronger KDF, as described in the Remediation section.

Verification

Partially Resolved.

Suggestions

Suggestion 1: Improve Error Handling and Reporting

Location

snap/src/UniversalResolver.service.ts#L29

Synopsis

In the aforementioned location, errors do not provide any useful message. Error handling can be improved
in order to provide user-friendly feedback, further aid developers in debugging possible issues, and
enhance code maintainability and quality.

Mitigation

We recommend implementing sufficient error handling, such that errors are handled consistently and
useful information is provided to help users resolve errors.

Status

The Blockchain Lab team has implemented the recommended remediation.

Verification

Resolved.

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 7
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/antelle/argon2-browser
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-10#section-4
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://github.com/blockchain-lab-um/masca/blob/develop/packages/snap/src/UniversalResolver.service.ts#L29

Suggestion 2: Sanitize, Filter, or Escape Before Validating

Location

snap/src/UniversalResolver.service.ts#L22C25-L22C33

Synopsis

Our team found that the code sends a fetch request to an external server. If this server is compromised, it
could return malicious data.

Mitigation

We recommend sanitizing, filtering, or escaping before validating the response from external sources.
Also, type assertion may not guarantee safe casting into a DIDResolutionResult object as opposed
to mapping the response to an interface type.

We also recommend adding a request timeout to prevent extended freeze time in case of an unresponsive
server.

Status

The Blockchain Lab team has implemented the recommended remediation.

Status

Resolved.

Suggestion 3: Host Instance of Universal Resolver

Location

snap/src/UniversalResolver.service.ts#L20

Synopsis

The UniversalResolver service relies on an external DID resolver, which is not meant for production
purposes and is subject to change.

Impact

If the Universal Resolvermakes malicious or incompatible changes to the DID resolution process,
the DID resolution could lead to arbitrary results, including resolving a malicious DID document.

Mitigation

We recommend that the Blockchain Lab team host their own instance of the Universal Resolver.

Status

The Blockchain Lab team has implemented the recommended remediation.

Verification

Resolved.

Suggestion 4: Update and Maintain Dependencies

Location

packages/snap/package.json

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 8
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/UniversalResolver.service.ts#L22C25-L22C33
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/UniversalResolver.service.ts#L20
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/package.json

Synopsis

Analyzing package.json for dependency versions using pnpm audit shows that the dependencies
used in the Masca MetaMask Snap have 5 reported known vulnerabilities (2 Moderate, 2 High, 1 Critical).
Additionally, the npx depcheck tool reported several unused dependencies and devDependencies.

Impact

Using unmaintained dependencies and devDependencies or packages with known vulnerabilities may
lead to critical security vulnerabilities in the codebase.

Mitigation

We recommend following a process that emphasizes secure dependency usage to avoid introducing
vulnerabilities to the Masca MetaMask Snap and to mitigate supply chain attacks, which includes:

● Manually reviewing and assessing currently used dependencies;
● Upgrading dependencies with known vulnerabilities to patched versions with fixes;
● Pinning dependencies to secure versions when upgrading vulnerable dependencies to secure

ones, including pinning build-level dependencies in the package.json file to a specific version;
● Only upgrading dependencies upon careful internal review for potential backward compatibility

issues and vulnerabilities; and
● Including Automated Dependency auditing reports in the project’s CI/CD workflow.

Status

The Blockchain Lab team has implemented the recommended remediation.

Verification

Resolved.

Suggestion 5: Avoid Using console.log

Location

Examples (non-exhaustive):

src/veramo/Veramo.service.ts#L579

src/veramo/Veramo.service.ts#L682

src/veramo/Veramo.service.ts#L747

src/polygon-id/Polygon.service.ts#L354

src/polygon-id/Polygon.service.ts#L388

Synopsis

Using console.log in a production environment can lead to the leakage of sensitive information like
user data, which can cause significant security risk.

Mitigation

We recommend refraining from using console.log in a production environment.

Status

The Blockchain Lab team has implemented the recommended remediation.

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 9
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/veramo/Veramo.service.ts#L579
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/veramo/Veramo.service.ts#L682
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/veramo/Veramo.service.ts#L747
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/polygon-id/Polygon.service.ts#L354
https://github.com/LeastAuthority/blockchain-lab-masca-snap/blob/60865a14936351a18ac0b8db06824f1c3038ddc3/packages/snap/src/polygon-id/Polygon.service.ts#L388

Verification

Resolved.

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 10
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 11
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Masca MetaMask Snap | Blockchain Lab 12
6 September 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

