
Bridge Smart Contracts
Security Audit Report

Ava Labs
Final Audit Report: 7 July 2023

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope

Specific Issues & Suggestions

Issue A: Unbalanced Activities Between Two Chains Can Grow the Queue of Outstanding Receipts

and Reduce Relayer Incentive

Issue B: Duplicate Receipts Can Be Re-Enqueued in the retryReceipt Function

Issue C: Missing Zero Address Check

Issue D: MinerTip Is Not Included in the Calculation of MaxFeeCap

Issue E: ERC20 Token Supporting “Fee On Transfer” Can Lead To Error in Accounting of Relayer

Reward

Issue F: submitCreateBridgeToken Will Revert for the Tokens That Do Not Implement the Optional

Function of the ERC20 Token Standard

Suggestions

Suggestion 1: Check That Type Assertion Succeeds

Suggestion 2: Implement a Mechanism Allowing the Subscriber To Control Goroutines

Suggestion 3: Return nil Instead of &TeleporterRelayer{}

Suggestion 4: Clear Private Keys From Memory

Suggestion 5: Prevent Ineffective Use of require Statement

Suggestion 6: Define the Visibility of State Variables Explicitly

Suggestion 7: Follow NatSpec Format

Security Audit Report | Bridge Smart Contracts | Ava Labs 1
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 8: Follow Solidity Style Guide

Suggestion 9: Implement Gas Optimizations

Suggestion 10: Add Emergency Shutdown Feature in Bridge Smart Contracts

Suggestion 11: Implement the Upgrade Mechanism for the Bridge Token

Suggestion 12: Improve Test Coverage for Relayer

Suggestion 13: Restrict Payload Size of Warp Precompile

About Least Authority

Our Methodology

Security Audit Report | Bridge Smart Contracts | Ava Labs 2
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Ava Labs has requested that Least Authority perform a security audit of their Bridge Smart Contracts.

Project Dates
● April 3 - May 8, 2023: Code Review (Completed)
● May 10, 2023: Delivery of Initial Audit Report (Completed)
● May 29, 2023: Delivery of Updated Initial Audit Report (Completed)
● July 6, 2023: Verification Review (Completed)
● July 7, 2023: Delivery of Final Audit Report (Completed)

Review Team
● Alicia Blackett, Security Researcher and Engineer
● Mukesh Jaiswal, Security Researcher and Engineer
● Ahmad Jawid Jamiulahmadi, Security Researcher and Engineer
● DK, Security Researcher and Engineer
● Xenofon Mitakidis, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Bridge Smart Contracts followed by
issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Teleporter:

https://github.com/ava-labs/teleporter
● EVM Relayer:

https://github.com/ava-labs/awm-relayer
● Avalanchego:

https://github.com/ava-labs/avalanchego/tree/master/vms/platformvm/warp
● Subnet-EVM PR:

https://github.com/ava-labs/subnet-evm/pull/586

Specifically, we examined the Git revisions for our initial review:

● Teleporter: a92507128e321243721d9b4cb8f5b0cf3d91cee4
● AVM Relayer: eab4112914de96d1d58911a7925c161286b5c5d0
● Avalanchego: d0a55ba57a5d8ebaa0717a812994f4a3df49c9d8
● Subnet-EVM: 21c1fb1fe45861a3a4a2323f228dbc6ea0d37d70
● Subnet-EVM PR: ef4fb8d2897045cc532873739942d16a37f70425

For the verification, we examined the Git revisions:

● Teleporter: 0f76bf51d02027a3139680a880a0d4ddff782ec1
● AVM Relayer: e646a953cc79f749ee8eb843bfa88185483018d1

Security Audit Report | Bridge Smart Contracts | Ava Labs 3
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ava-labs/teleporter
https://github.com/ava-labs/awm-relayer
https://github.com/ava-labs/avalanchego/tree/master/vms/platformvm/warp
https://github.com/ava-labs/subnet-evm/pull/586

For the review, these repositories were cloned for use during the audit and for reference in this report:

● Teleporter:
https://github.com/LeastAuthority/AvaLabs_Teleporter

● EVM Relayer:
https://github.com/LeastAuthority/AvaLabs_awm_Relayer

● Avalanchego :
https://github.com/LeastAuthority/AvaLabs_Avalanchego/tree/master/vms/platformvm/warp

● Subnet-EVM PR:
https://github.com/LeastAuthority/AvaLabs-Subnets/pull/6

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Avalanche Warp Messaging:
https://github.com/ava-labs/subnet-evm/blob/warp-e2e/precompile/contracts/warp/README.m
d

● Teleporter Implementation Document.pdf (shared with Least Authority via Slack on 30 March
2023)

In addition, this audit report references the following documents:
● Type assertions:

https://go.dev/ref/spec#Type_assertions
● SetFinalizer mechanism:

https://pkg.go.dev/runtime#SetFinalizer
● NatSpec Format:

https://docs.soliditylang.org/en/v0.8.19/natspec-format.html
● Solidity Style Guide:

https://docs.soliditylang.org/en/v0.8.19/style-guide.html

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Common and case-specific implementation errors;
● Adversarial actions and other attacks on the bridge;
● Attacks that impact funds, such as the draining or manipulation of funds;
● Mismanagement of funds via transactions;
● Denial of Service (DoS) attacks and security exploits that would impact or disrupt execution of the

bridge;
● Vulnerabilities within individual components and whether the interaction between the

components is secure;
● Exposure of any critical information during interactions with any external libraries;
● Proper management of encryption and signing keys;
● Protection against malicious attacks and other methods of exploitation;
● Data privacy, data leaking, and information integrity;
● Inappropriate permissions and excess authority;

Security Audit Report | Bridge Smart Contracts | Ava Labs 4
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_Teleporter
https://github.com/LeastAuthority/AvaLabs_awm_Relayer
https://github.com/LeastAuthority/AvaLabs_Avalanchego/tree/master/vms/platformvm/warp
https://github.com/LeastAuthority/AvaLabs-Subnets/pull/6
https://github.com/ava-labs/subnet-evm/blob/warp-e2e/precompile/contracts/warp/README.md
https://github.com/ava-labs/subnet-evm/blob/warp-e2e/precompile/contracts/warp/README.md
https://go.dev/ref/spec#Type_assertions
https://pkg.go.dev/runtime#SetFinalizer
https://docs.soliditylang.org/en/v0.8.20/natspec-format.html
https://docs.soliditylang.org/en/v0.8.20/style-guide.html

● Vulnerabilities in the solidity contract, including, but not limited to, re-entrancy attacks, access
control, etc.;

● Opportunities for optimizations, such as increasing gas efficiency in the solidity contracts and
following the latest solidity best practices;

● Possible attack vectors in the Teleporter contract due to the reordering of messages or
subsequent attempts to retry messages;

● Usage of Peer-to-Peer (P2P) networking interface and DoS vectors in the AWM relayer; and
● Whether EVM nonce-management is currently in accordance with best practices.

Findings
General Comments
Our team performed a security audit of the Ava Labs Teleporter system, which is intended to facilitate
efficient cross-chain transfer of messages and assets. The system is composed of several components,
including a relayer, which is a node responsible for passing information across subnets, implemented in
Go, an Ethereum smart contract suite implemented in Solidity, and the Avalanche Subnet EVM Warp
Precompile, which is a primitive that allows communication between custom subnets.

In addition to investigating the areas of concern listed above, our team performed a comprehensive
review of the design and implementation of Teleporter, its components, and the modifications introduced
to the Subnet EVM, including how the transaction access list is handled, the mechanism allowing
subnet-to-subnet communication, and changes in total intrinsic gas calculations. We found that the
system is well-designed and well-implemented. However, we identified some areas of improvement.

System Design
In our review of the design of the system, our team identified issues, primarily in the design of the smart
contract component, that could lead to unexpected behavior. We found that the design of the messaging
system could have unintended effects on the balance of the relayer incentive mechanism (Issue A). This
issue can be exacerbated by functionality allowing copies of the same receipt to be enqueued (Issue B).
We recommend exploring solutions other than a queue for recording outstanding receipts.

We found that tokens with particular characteristics could lead to incorrect token accounting in the bridge
smart contracts (Issue E). Additionally, the smart contracts require optional functionality in tokens to be
implemented, and tokens that do not implement this functionality cannot use the bridge (Issue F).

Our team identified areas of improvement in the design of the smart contract suite, including the
implementation of an emergency pause functionality (Suggestion 10) as well as an upgrade mechanism
for the bridge token (Suggestion 11).

We found that security has been taken into consideration in the design of the relayer. However, we found
that insufficient clearing of sensitive data is performed in the implementation of the relayer, and we
recommend this be improved (Suggestion 4).

Code Quality
Our team performed a manual code review of the components in scope and found that the
relayer/Teleporter code is well-written and organized. However, we identified opportunities for improving
the overall security and quality of the relayer implementation (Suggestion 1, Suggestion 2, Suggestion 3).

Security Audit Report | Bridge Smart Contracts | Ava Labs 5
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

In our review of the solidity codebase, our team identified an implementation Issue whereby the gas fee
calculation is not implemented completely, causing a delay in user transactions during high network
activity periods (Issue D). Furthermore, we found that the quality of the code can be improved by adhering
to solidity best practices (Suggestion 6) and style guidelines (Suggestion 8). Our team also found gas
optimizations that will improve gas efficiency and readability for the system and its users (Suggestion 9,
Suggestion 5), if implemented.

Tests

Our team found that sufficient tests are implemented for the smart contracts suite. However, the test
coverage for the relayer was found to be insufficient, with no test coverage for relayer.go and very
limited coverage for the utils and config files. We recommend expanding the test suite for the relayer
to cover all success, failure, and edge cases (Suggestion 12).

The Warp precompile tests contain unresolved TODOs, which we recommend completing.

Documentation
The project documentation provided for this review is generally sufficient and accurately describes the
system and its components.

Code Comments

The relayer implementation, the smart contracts, and the Warp Precompile are all well-commented.
However, we recommend adhering to the NatSpec guidelines for code comments in Solidity codebases
(Suggestion 7).

Scope
The scope of this review was generally sufficient and included all security-critical components. We
recommend that the implementation of the BLS signatures be included in future security audits of the
system.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Unbalanced Activities Between Two Chains Can Grow the Queue of
Outstanding Receipts and Reduce Relayer Incentive

Partially Resolved

Issue B: Duplicate Receipts Can Be Re-Enqued in the retryReceipt Function Resolved

Issue C: Missing Zero Address Check Resolved

Issue D: MinerTip Is Not Included in the Calculation of MaxFeeCap Partially Resolved

Issue E: ERC20 Token Supporting “Fee on Transfer” Can Lead To Error in
Accounting of Relayer Reward

Resolved

Issue F: submitCreateBridgeToken Will Revert for the Tokens That Do Not Unresolved

Security Audit Report | Bridge Smart Contracts | Ava Labs 6
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Implement the Optional Function of the ERC20 Token Standard

Suggestion 1: Check That Type Assertion Succeeds Resolved

Suggestion 2: Implement a Mechanism Allowing the Subscriber To Control
Goroutines

Resolved

Suggestion 3: Return nil Instead of &TeleporterRelayer{} Resolved

Suggestion 4: Clear Private Keys From Memory Partially Resolved

Suggestion 5: Prevent Ineffective Use of require Statement Resolved

Suggestion 6: Define the Visibility of State Variables Explicitly Resolved

Suggestion 7: Follow NatSpec Format Unresolved

Suggestion 8: Follow Solidity Style Guide Unresolved

Suggestion 9: Implement Gas Optimizations Partially Resolved

Suggestion 10: Add Emergency Shutdown Feature in Bridge Smart Contracts Unresolved

Suggestion 11: Implement the Upgrade Mechanism for the Bridge Token Unresolved

Suggestion 12: Improve Test Coverage for Relayer Unresolved

Suggestion 13: Restrict Payload Size of Warp Precompile Unresolved

Issue A: Unbalanced Activities Between Two Chains Can Grow the Queue
of Outstanding Receipts and Reduce Relayer Incentive

Synopsis

Given two subnets A and B, it is possible for messages to be sent only in one direction from the origin
subnet A to the destination subnet B (A→ B). This may result in subnet B being unable to send back
enough receipts for subnet A. In this case, relayers have to send no-opmessages back to subnet A to be
able to receive their fee rewards. However, in every attempt, a maximum of five receipts can be sent from
the destination subnet to the origin subnet in a batch. This would reduce the relayers’ incentive to send
no-opmessages because their receipts may be at the end of the queue.

Relayers may become unwilling to spend gas on no-opmessages that will not unlock their rewards. Even
if a relayer has receipts at the start of the queue, they may not have enough incentive to spend gas on a
no-opmessage that unlocks the reward for only one receipt.

Impact

In general, this Issue may reduce the relayers’ incentive to send messages from the source chain to the
destination chain unless they are offered fees high enough to account for the reward being locked for a
prolonged period.

Security Audit Report | Bridge Smart Contracts | Ava Labs 7
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Activities occurring from the source chain to the destination chain may be obstructed due to a large
number of outstanding receipts being queued on the destination chain since relayers know that their
rewards will not be easily redeemable if they relay messages to a crowded destination subnet. This could
also result in relayer fees becoming considerably high.

Preconditions

This Issue is possible in pairs of subnets where messages are sent in one direction most of the time.

Mitigation

We recommend giving the relayer the option to send back their own receipts with a new opcode. We also
recommend exploring solutions other than a queue for recording outstanding receipts.

Status

The Ava Labs team has allowed relayers to optionally send back a batch, consisting of a maximum of five
receipts, to the source chain using the retryReceipts function. However, the team has not removed the
related receipts from the outstanding receipts due to the additional complexity and gas costs incurred
when tracking the receipts that are in the queue and removing them from arbitrary positions from within
the queue. Consequently, the congestion on the queue would still occur.

Verification

Partially Resolved.

Issue B: Duplicate Receipts Can Be Re-Enqueued in the retryReceipt
Function

Location

contracts/src/Teleporter/TeleporterMessenger.sol#L598-L622

Synopsis

The retryReceipt function can add duplicate receipts to the list of outstanding receipts queue,
unnecessarily growing the size of the queue with duplicate values. Since adding duplicate receipts to the
queue is a relatively inexpensive process, an attacker could try to spam the queue with duplicate values,
making it more difficult to send receipts to the origin chain.

Impact

Relayer rewards may not be processed in a timely manner, reducing their incentive to relay messages to
the particular chain.

Preconditions

This Issue is possible if the same receipts are added to the queue.

Mitigation

We recommend checking if a particular receipt is already in the queue by adding an appropriate function
in the ReceiptQueue smart contract. We also recommend exploring solutions other than a queue for
recording outstanding receipts.

Security Audit Report | Bridge Smart Contracts | Ava Labs 8
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/Teleporter/TeleporterMessenger.sol#L598-L622

Status

The Ava Labs team has updated the mechanism such that at present, for a list of receipts, a no-op
teleporter message is sent back to the origin chain, removing the necessity for re-enqueueing dropped
receipts.

Verification

Resolved.

Issue C: Missing Zero Address Check

Location

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L286

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L471

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L502

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L284

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L500

Synopsis

There is no zero address check validating the correctness of security-critical referenced address inputs
passed to external functions, and thus preventing the loss of funds.

Impact

Passing a zero address to the aforementioned smart contract functions, without any input validation,
might result in the loss of funds sent to addresses that can be set as zero addresses.

Remediation

We recommend checking the referenced parameters against zero address.

Status

The Ava Labs team has added zero address checks as suggested.

Verification

Resolved.

Issue D: MinerTip Is Not Included in the Calculation of MaxFeeCap

Location

vms/evm/destination_client.go#L104

Synopsis

MaxFeeCap is calculated from the baseFee and the minerTip. However, while constructing the
transaction, it only includes the baseFee, due to which the effectiveTip will always be zero.

Impact

During heavy congestion, the transaction with a zero effectiveTip will take longer to be confirmed
because the validators will prioritize the transaction that has the highest effective tip.

Security Audit Report | Bridge Smart Contracts | Ava Labs 9
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L286
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L471
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L502
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L284
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L500
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/e70cc4cf3e6104e7c16d50dc69c135159c5ac1b7/vms/evm/destination_client.go#L104

Technical Details

The GasTipCap is commented while constructing the transaction, so its value will be zero by default.
Note that: EffectiveTip = Min(MaxFeeCap - BaseFee, GasTipCap). Therefore, since
GasTipCap is always zero, the effectiveTip will be zero.

Remediation

We recommend setting the GasTip value while constructing the transaction to allow miners to earn an
effective tip. We recommend referring to ether.js and web3.py for appropriate values (1-2.5 gwei).

Status

The Ava Labs team has allowed GasTtiIpCap value to be added when the transaction is constructed,
due to which the effectiveTip will not be zero by default. However, MaxFeeCap still does not include
the minerTip in the calculation.

Verification

Partially Resolved.

Issue E: ERC20 Token Supporting “Fee On Transfer” Can Lead To Error in
Accounting of Relayer Reward

Location

contracts/src/CrosschainApplication/ERC20Bridge/ERC20Bridge.sol#l359

Synopsis

In the case of an ERC20 token that features “fee on transfer,” or the deflationary token “burn on transfer,”
the amount received in a transfer would be less than the amount sent.

Impact

The bridge smart contracts will receive an amount that is less than the expected amount, which will affect
the reward calculation for the relayer. Since the bridge smart contracts do not approve the actual amount
received by the user, this could result in the case where a relayer would be unable to redeem their full
reward.

Preconditions

This Issue is possible if bridged tokens support “burn on transfer” or “fee on transfer” functionality.

Remediation

In order to obtain the actual amount received by the contract, we recommend tracking the balance of
tokens before and after the transfer of tokens. For example, in the contract test, we recommend
implementing the following steps:

function _transfer(uint256 amount) public returns(uint256){

uint256 balanceBefore = IERC20(token).balanceOf(address(this));

IERC20Token(token).SafetransferFrom(msg.sender, address(this),
amount);

uint256 balanceAfter = IERC20(token).balanceOf(address(this));

Security Audit Report | Bridge Smart Contracts | Ava Labs 10
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/e70cc4cf3e6104e7c16d50dc69c135159c5ac1b7/vms/evm/destination_client.go#L105
https://github.com/ethers-io/ethers.js/commit/7175e2e99c2747e8d2314feb407bf0a0f9371ece
https://github.com/soos3d/Web3.py-estimate-gas-fees
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L359

require(balanceAfter >= balanceBefore);

return balanceAfter - balanceBefore;

}

Status

The Ava Labs team has implemented the method supporting “burn on transfer” or “fee on transfer”
functionality.

Verification

Resolved.

Issue F: submitCreateBridgeToken Will Revert for the Tokens That Do Not
Implement the Optional Function of the ERC20 Token Standard

Location

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L393

Synopsis

The functions ERC20(_token).decimals, ERC20(_token).name, and ERC20(_token).symbol are
optional functions in the EIP20 standard. The token can still be ERC20 compliant without the
implementation of these three functions (e.g. Maker).

Impact

When a user creates a new bridge token through submitCreateBridgeToken, if the native token does
not implement the optional ERC20 function, the function call will revert.

Remediation

At the contract level, the token can be checked through the staticCall function, as follows:

(bool result, bytes memory decimal) =
token.staticcall(abi.encodeWithSIgnature(“decimals()”))

We recommend that the Ava Labs team verify the Boolean value and check the status of the call.. If the
call is successful, the return data must be decoded.

Status

The Ava Labs team stated that they do not plan on supporting tokens that do not implement names,
symbols, and decimals and prefer not to introduce additional complexity in checks for minor gas
optimizations.

Verification

Unresolved.

Security Audit Report | Bridge Smart Contracts | Ava Labs 11
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L393
https://github.com/makerdao/dss-vest/blob/4e04cec2607a6e59960ce8bd729666cfddc2f523/echidna/DSToken.sol#L197-L199

Suggestions

Suggestion 1: Check That Type Assertion Succeeds

Location

teleporter_relayer/relayer.go

Synopsis

The code in the function isValidSignatureResponse does not check that type assertion holds. In the
case that type assertion is false, a run-time panic can occur.

Mitigation

We recommend that a check be added to verify that type assertion holds.

Status

The Ava Labs team has implemented the suggested mitigation.

Verification

Resolved.

Suggestion 2: Implement a Mechanism Allowing the Subscriber To Control
Goroutines

Location

vms/evm/subscriber.go#L70

vms/evm/subscriber.go#L129

Synopsis

The subscriber type uses goroutines ineffectively, which could lead to goroutine leakage or blocking.

For example:

1. for loop is used without a selectmechanism. If the evmLog channel is closed, and a
subscriber goroutine is running, the goroutine may be blocked;

2. A message is written to a log channel without a selectmechanism. If the receiving goroutine
cannot read from the channel, the goroutine will be blocked;

3. A goroutine is created without a description that explicitly specifies when and how it is going to
be stopped; and

4. in the subscriber type, the context package or stop channels are not used.

Mitigation

We recommend implementing a mechanism that allows users to stop the created goroutines and to be
protected against blocking.

Status

The Ava Labs team has implemented the standard “range-close” mitigation as recommended.

Security Audit Report | Bridge Smart Contracts | Ava Labs 12
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/adfa6f897debd062a19266f88e619b07c0328b27/teleporter_relayer/relayer.go#L520
https://go.dev/ref/spec#Type_assertions
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/main/vms/evm/subscriber.go#L70
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/main/vms/evm/subscriber.go#L129
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/main/vms/evm/subscriber.go#L70
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/adfa6f897debd062a19266f88e619b07c0328b27/vms/evm/subscriber.go#L78
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/adfa6f897debd062a19266f88e619b07c0328b27/vms/evm/subscriber.go#L129

Verification

Resolved.

Suggestion 3: Return nil Instead of &TeleporterRelayer{}

Location

teleporter_relayer/relayer.go#L73

teleporter_relayer/relayer.go#L87

teleporter_relayer/relayer.go#L113

Synopsis

&TeleporterRelayer{} is returned instead of nil. This practice is not idiomatic construction, and it is
not consistent with the pointer semantic and error handling paradigm in Go.

Mitigation

We recommend returning nil instead of &TeleporterRelayer{}.

Status

The Ava Labs team has implemented the suggested mitigation.

Verification

Resolved.

Suggestion 4: Clear Private Keys From Memory

Location

vms/platformvm/warp/signer.go#L36

vms/evm/destination_client.go#L32

config/config.go#L47

Synopsis

Private keys are not cleared from memory after usage.

Mitigation

Private keys should be cleared from memory as long as the Go mechanism allows it. We recommend
using the SetFinalizermechanism in Go to clear the memory, despite the fact that it does not
guarantee that the secret values will be removed effectively from the memory.

Status

The Ava Labs team has started clearing private keys from memory after usage.

Verification

Partially Resolved.

Security Audit Report | Bridge Smart Contracts | Ava Labs 13
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/main/teleporter_relayer/relayer.go#L73
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/main/teleporter_relayer/relayer.go#L87
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/main/teleporter_relayer/relayer.go#L113
https://github.com/LeastAuthority/AvaLabs_Avalanchego/blob/master/vms/platformvm/warp/signer.go#L36
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/e70cc4cf3e6104e7c16d50dc69c135159c5ac1b7/vms/evm/destination_client.go#L32
https://github.com/LeastAuthority/AvaLabs_awm_relayer/blob/0e870c0bac0fc78b854bbe57ca1fb350cb465bde/config/config.go#L47
https://pkg.go.dev/runtime#SetFinalizer

Suggestion 5: Prevent Ineffective Use of require Statement

Location

contracts/src/Teleporter/ReceiptQueue.sol#L23

Synopsis

Any state variable defined in solidity can be read using the getStorageAt function, even if it is declared
private or internal. Therefore, the require statement referenced above is unnecessary since
anyone can calculate the size of the queue.

Mitigation

We recommend removing the require statement to save gas.

Status

The Ava Labs team has removed the require statement.

Verification

Resolved.

Suggestion 6: Define the Visibility of State Variables Explicitly

Location

Example (Non-Exhaustive):

contracts/src/Teleporter/ReceiptQueue.sol#L13-L16

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L44

contracts/src/Teleporter/TeleporterMessenger.sol#L28-L56

Synopsis

State variables defined in the contracts do not explicitly mark the visibility. It is considered best practice to
explicitly mark the visibility of state variables and functions to prevent incorrect assumptions about who
can call the function and access the variable.

Mitigation

We recommend setting the visibility of state variables explicitly to improve readability.

Status

The Ava Labs team has explicitly defined the visibility of state variables.

Verification

Resolved.

Security Audit Report | Bridge Smart Contracts | Ava Labs 14
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/Teleporter/ReceiptQueue.sol#L23
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/Teleporter/ReceiptQueue.sol#L13-L16
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L44
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/Teleporter/TeleporterMessenger.sol#L28-L56

Suggestion 7: Follow NatSpec Format

Synopsis

Although the smart contract inline documentation is comprehensive and detailed, it does not follow a
specific format, which inhibits code maintenance and readability. The NatSpec format is the industry
standard for Solidity.

Mitigation

We recommend adhering to the NatSpec guidelines specified in Solidity’s documentation.

Status

The Ava Labs team stated that the suggested mitigation has been added to their backlog. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 8: Follow Solidity Style Guide

Synopsis

The order of functions in the smart contracts is not in accordance with Solidity’s style guide, which
inhibits the readability of the smart contracts.

Mitigation

We recommend adhering to the Solidity style guide in the development of Solidity smart contracts.

Status

The Ava Labs team stated that the suggested mitigation has been added to their backlog. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 9: Implement Gas Optimizations

Location

Use custom errors (non-exhaustive examples):

contracts/src/Teleporter/ReceiptQueue.sol#L28

contracts/src/Teleporter/ReceiptQueue.sol#L37

contracts/src/Teleporter/ReceiptQueue.sol#L38

contracts/src/Teleporter/TeleporterMessenger.sol#L144

contracts/src/Teleporter/TeleporterMessenger.sol#L218

Cache the array length outside a loop:

Security Audit Report | Bridge Smart Contracts | Ava Labs 15
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.soliditylang.org/en/v0.8.20/natspec-format.html
https://docs.soliditylang.org/en/v0.8.19/style-guide.html
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/3a6d0ea046476b45bd2eef4a47e2f825213b02c7/contracts/src/Teleporter/ReceiptQueue.sol#L28
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/3a6d0ea046476b45bd2eef4a47e2f825213b02c7/contracts/src/Teleporter/ReceiptQueue.sol#L37
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/3a6d0ea046476b45bd2eef4a47e2f825213b02c7/contracts/src/Teleporter/ReceiptQueue.sol#L38
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/6d1268ae43eb32c5f0b33e65cbe95598085aa8b3/contracts/src/Teleporter/TeleporterMessenger.sol#L144
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/6d1268ae43eb32c5f0b33e65cbe95598085aa8b3/contracts/src/Teleporter/TeleporterMessenger.sol#L218

contracts/src/Teleporter/TeleporterMessenger.sol#L512

Consider using the prefix increment expression if the return value is not needed:

contracts/src/Teleporter/TeleporterMessenger.sol#L127

contracts/src/Teleporter/TeleporterMessenger.sol#L335

contracts/src/Teleporter/TeleporterMessenger.sol#L512

Declare constructors as payable (non-exhaustive examples):

contracts/src/Teleporter/TeleporterMessenger.sol#L71

contracts/src/Teleporter/ReceiptQueue.sol#L18

contracts/src/CrossChainApplications/ERC20Bridge/BridgeToken.sol#L15

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L51

Remove redundant checks:

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L74-L78

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L179-L184

Consider using nested statements that is more gas-efficient:

contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L523

Synopsis

There are many gas-related inefficiencies throughout the codebase where improvements can be made to
decrease gas consumption.

Mitigation

We recommend performing the aforementioned changes while considering the optimal balance between
code readability and gas optimization.

Status

Gas optimization is always a tradeoff between readability, simplicity, and efficiency.

The Ava Labs team has implemented major improvements to decrease gas consumption by using postfix
increment expressions, avoiding nested IF statements, etc. However, custom errors have not been
implemented.

Verification

Partially Resolved.

Security Audit Report | Bridge Smart Contracts | Ava Labs 16
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/6d1268ae43eb32c5f0b33e65cbe95598085aa8b3/contracts/src/Teleporter/TeleporterMessenger.sol#L512
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/6d1268ae43eb32c5f0b33e65cbe95598085aa8b3/contracts/src/Teleporter/TeleporterMessenger.sol#L127
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/6d1268ae43eb32c5f0b33e65cbe95598085aa8b3/contracts/src/Teleporter/TeleporterMessenger.sol#L335
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/6d1268ae43eb32c5f0b33e65cbe95598085aa8b3/contracts/src/Teleporter/TeleporterMessenger.sol#L512
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/6d1268ae43eb32c5f0b33e65cbe95598085aa8b3/contracts/src/Teleporter/TeleporterMessenger.sol#L71
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/3a6d0ea046476b45bd2eef4a47e2f825213b02c7/contracts/src/Teleporter/ReceiptQueue.sol#L18
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/BridgeToken.sol#L15
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L51
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L74-L78
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L74-L78
https://github.com/LeastAuthority/AvaLabs_Teleporter/blob/a92507128e321243721d9b4cb8f5b0cf3d91cee4/contracts/src/CrossChainApplications/ERC20Bridge/ERC20Bridge.sol#L523

Suggestion 10: Add Emergency Shutdown Feature in Bridge Smart
Contracts

Synopsis

Currently, the bridge smart contracts do not support emergency shutdown. As a result, if a vulnerability is
discovered, the system remains compromised and attacks exploiting the vulnerability (for example, to
drain the bridge assets) cannot be stopped until an upgrade is performed successfully.

Mitigation

An emergency shutdown feature can provide upgrade safety during the deployment of the smart
contracts, in case of a hack.

A quorum of the relayers can be used in order to vote for the activation of an emergency shutdown. This
will allow the relayers to determine whether the current issue is a threat to the bridge smart contracts, and
pause it for a temporary period, until an upgrade is completed. This mitigation may cause a delay in
activation.

The mitigation can also be achieved through a Multi-Sig contract, which has the ability to activate the
pausable function in the contract.

Status

The Ava Labs team stated that the suggested mitigation has been added to their backlog. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 11: Implement the Upgrade Mechanism for the Bridge Token

Synopsis

The upgrade mechanism provides the ability to fix a bug or a vulnerability in case of a hack. In addition,
the mechanism makes it possible to add new functionality to – and remove functionality from – an
existing contract. The Avalanche Bridge Token does not implement this upgradable feature.

Mitigation

We recommend implementing a proxy pattern, such as Universal Upgradable Proxy Pattern, Transparent
Proxy, etc.

Status

The Ava Labs team stated that the suggested mitigation has been added to their backlog. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 12: Improve Test Coverage for Relayer

Synopsis

There is no test coverage for the relayer.go file, and very limited coverage for the utils (20%) and the
config (13.5%) files. In addition, our team was unable to run the contract_message tests. A robust

Security Audit Report | Bridge Smart Contracts | Ava Labs 17
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

test suite helps verify that components are implemented correctly, identifies errors and unintended
behavior, and aids in reasoning about the security characteristics of the system.

Mitigation

We recommend further increasing test coverage such that it includes all parts of the codebase.

Status

The Ava Labs team stated that the suggested mitigation has been added to their backlog. Hence, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 13: Restrict Payload Size of Warp Precompile

Synopsis

Since there is no restriction on the payload in the messages passed to a Warp precompile to be signed
and sent, the gas limit could be exceeded and the transaction could be reverted, without an explicit error
being emitted.

Mitigation

We recommend adding a check to limit the payload in the messages passed to the Warp precompile.

Status

Our team was unable to confirm that the suggested mitigation has been resolved as of the time of the
verification.

Verification

Unresolved.

Security Audit Report | Bridge Smart Contracts | Ava Labs 18
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Bridge Smart Contracts | Ava Labs 19
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Bridge Smart Contracts | Ava Labs 20
7 July 2023 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

