
Avalanche Mobile Wallet (2nd Review)
Security Audit Report

Ava Labs
Updated Final Audit Report: 12 April 2024

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation and Code Comments

Scope

Specific Issues & Suggestions

Issue A: Mnemonics Copied to Clipboard

Issue B: Unchecked Security Level Endangers Key Material

Issue C: The Module redux-persist-transform-encrypt Does Not Use Authenticated Encryption

Issue D: Wallet Can Be Deleted Without Authentication

Issue E: Mobile Wallet Does Not Enforce User Consent To Establish Websocket Connection

Suggestions

Suggestion 1: Adjust Argon2 Parameters

Suggestion 2: Remove Deprecated WalletConnect Version Support

Suggestion 3: Display Informative Warning for Jailbroken/Rooted Devices

Suggestion 4: Encrypt ViewOnceInformation

About Least Authority

Our Methodology

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 1
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Ava Labs has requested that Least Authority perform a second security audit of their Avalanche Mobile
Wallet.

Project Dates
● July 20, 2023 - August 24, 2023: Initial Code Review (Completed)
● August 28, 2023: Delivery of Initial Audit Report (Completed)
● November 28, 2023: Verification Review (Completed)
● November 30, 2023: Delivery of Final Audit Report (Completed)
● April 12, 2024: Delivery of Updated Final Audit Report (Completed)

Review Team
● Ann-Christine Kycler, Security Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Avalanche Mobile Wallet followed
by issue reporting, along with mitigation and remediation instructions as outlined in this report.

The following code repositories are considered in scope for the review:
● Avalanche Mobile Wallet:

https://github.com/ava-labs/avalanche-wallet-apps

Specifically, we examined the Git revision for our initial review:

● 0b1bd1c4c6d5ca90042f5a21eacf995a7054e766

For the verification, we examined the Git revision:

● 91c9490827b863f17f4c967eb8967b05bb8aa71d

For the review, this repository was cloned for use during the audit and for reference in this report:

● Avalanche Mobile Wallet:
https://github.com/LeastAuthority/Avalance-Mobile-Wallet

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third-party code, unless specifically mentioned as in scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Ava Labs:
https://ava-labs.atlassian.net/wiki/spaces/EN/pages/2039840784/Mobile+Environment+React+
Native+Setup

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 2
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/ava-labs/avalanche-wallet-apps
https://github.com/LeastAuthority/Avalance-Mobile-Wallet
https://ava-labs.atlassian.net/wiki/spaces/EN/pages/2039840784/Mobile+Environment+React+Native+Setup
https://ava-labs.atlassian.net/wiki/spaces/EN/pages/2039840784/Mobile+Environment+React+Native+Setup

In addition, this audit report references the following documents:
● M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among Notions and Analysis

of the Generic Composition Paradigm.” Springer Link, 2000, [BN00]
● RFC 9106 - Argon2 Standards Document:

https://datatracker.ietf.org/doc/html/rfc9106#name-parameter-choice
● Behavior Changers: all Apps | Android Developers

https://developer.android.com/about/versions/12/behavior-changes-all#clipboard-access-notific
ations

● Android 9 Compatibility Definition:
https://source.android.com/docs/compatibility/9/android-9-cdd

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation and adherence to best practices;
● Exposure of any critical information during user interactions with the blockchain and external

libraries, including authentication mechanisms;
● Adversarial actions and other attacks that impact funds, such as the draining or manipulation of

funds;
● Mismanagement of funds via transactions;
● Vulnerabilities in the code and whether the interaction between the related and network

components is secure;
● Proper management of encryption and storage of private keys, including the key derivation

process;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Core Mobile Wallet is a mobile wallet application that provides functionality to send and receive
assets and collectibles from the Avalanche, Ethereum, and Bitcoin networks. It also allows connecting to
dApps via the WalletConnect Protocol.

Our team performed a first audit of the Core Wallet in the time period September - October 2022, and
delivered the Final Audit Report on January 30, 2023. In this review, in addition to conducting a full audit of
the current implementation, our team also checked if the security issues and suggestions that were
identified in the previous review have been addressed in the current implementation.

System Design
Our team found that the Core Wallet developer team approached the design of the application with
security in mind. This is evident in that our findings are specific and do not concern the overall design of
the application.

In the first report, our team had mentioned that the minimum supported API level had been too low for
sufficient security guarantees, and this has been remediated by supporting the minimum API level 28
(Android 9). Our team had also noted that in some instances, the application overview screen of the
operating system may leak sensitive information (Issue C in our previous report), which the Core Wallet
team mitigated since our team reported it. Additionally, we found that the copying of secrets, such as

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 3
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://link.springer.com/chapter/10.1007/3-540-44448-3_41
https://datatracker.ietf.org/doc/html/rfc9106#name-parameter-choice
https://developer.android.com/about/versions/12/behavior-changes-all#clipboard-access-notifications
https://developer.android.com/about/versions/12/behavior-changes-all#clipboard-access-notifications
https://source.android.com/docs/compatibility/9/android-9-cdd

mnemonics, to the clipboard may result in other malicious applications being able to access them. This
Issue remains unresolved and, thus, our team is reporting it again (Issue A). Similarly, our team found that
a lack of user consent prior to communication to a dApp via the WalletConnect Protocol remains an Issue
(Issue E). The Issues that have not been addressed from our previous review are characterized by
requiring a user experience trade-off. However, we recommend always prioritizing security and explicitly
informing users of risks when this is not feasible.

When the user switches back to the application, the Core Wallet implements an access control
mechanism to the application by requiring a 6-digit pin or biometrics before access to the wallet is
granted. However, our team found that wallets can, in some instances, be deleted without the need for
prior authentication via the pin (Issue D). The Ava Labs team addressed this finding by noting that this
attack would require an attacker already having access to the device; consequently, in the event that an
attacker deletes the application, this finding becomes invalid. While our team agrees with this reasoning,
we recommend that extra caution be taken, as this finding could be combined with other exploits and
thereby provides a different attack vector to the sole deletion of the application.

Storage

Locally stored secrets are handled by the native keystore libraries and, as an additional security layer, the
Core Wallet encrypts the mnemonics with a key derived from a 6-digit pin using Argon2. Our team found
several issues related to secret storage and storage usage.

With the current minimally supported API level 28, for some versions of Android, different security
assumptions could apply for the application. The implementation of a hardware-backed keystore is not
required by all manufacturer Android versions operating on that API level (Issue B), and additional checks
for those features need to be implemented.

The parameters used for Argon2 deviate from the standard recommendations, and we recommend the
usage of recommended parameters (Suggestion 1).

Most user data other than the secrets (which are handled by native key storage) are stored encrypted in a
database managed via a third-party library. However, some data that could leak information about user
behavior is stored unencrypted. We recommend including this information in the encrypted data to
mitigate potential data leaks of the application (Suggestion 4).

dApp Connection

After our team completed the first audit, the Core Wallet switched to version 2 of the WalletConnect
Protocol. Version 1 of the protocol has since been sunset and our team recommends not supporting this
version and removing code handling the old protocol version from the codebase (Suggestion 2).
Previously reported Issues, such as displaying misleading information in a session approval screen (Issue
F in our previous report) and not properly parsing version numbers (Suggestion 1 in our previous report)
have since been remediated.

Code Quality
The structure of the code resembles the codebases of other applications built using React Native, which
makes it easy to navigate. Names of files, types, functions, and variables are descriptive, which further
helps readability. Additionally, react components were used idiomatically.

Tests

The Ava Labs team has implemented sufficient tests, which showed high coverage of important logic,
especially around WalletConnect v2.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 4
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Documentation and Code Comments
Our team found that even though there was not a large amount of documentation or code comments, the
complexity of the code does not require extensive comments. Additionally, the project documentation
provided a generally sufficient overview of the system and its intended behavior, and the code comments
were helpful.
However, we did identify a few areas where more documentation would be helpful. For example, some
dependencies are patched, but for some of the patches, it is not clearly explained why the patch is
needed. Our team also found some areas of improvement in how users are informed of the security of
their choices regarding the usage of the Core Wallet (Issue A, Suggestion 3).

Scope
The scope of this review was sufficient and included all security-critical components.

Dependencies

Our team identified that the dependency redux-persist-transform-encrypt does not utilize
authenticated encryption. We recommend either forking or patching the dependency to use an
authenticated encryption algorithm (Issue C).

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Mnemonics Copied to Clipboard Partially Resolved

Issue B: Unchecked Security Level Endangers Key Material Unresolved

Issue C: The Module redux-persist-transform-encrypt Does Not Use
Authenticated Encryption

Resolved

Issue D: Wallet Can Be Deleted Without Authentication Determined Non-Issue

Issue E: Mobile Wallet Does Not Enforce User Consent To Establish
Websocket Connection

Unresolved

Suggestion 1: Adjust Argon2 Parameters Resolved

Suggestion 2: Remove Deprecated WalletConnect Version Support Resolved

Suggestion 3: Display Informative Warning for Jailbroken/Rooted Devices Resolved

Suggestion 4: Encrypt ViewOnceInformation Resolved

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 5
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue A: Mnemonics Copied to Clipboard

Location

app/components/MnemonicScreen.tsx#L69

app/utils/DeviceTools.ts

Synopsis

The mobile wallet currently has a feature, which allows the user to copy the mnemonics to clipboard. On
many devices, the clipboard can be accessed by all the applications within the system.

This Issue has already been reported in the previous Audit Report (Issue E) our team delivered on January
30, 2023 and has not been resolved. It is still our belief that the copying of the mnemonics to the
clipboard is a security risk. Hence, we report this Issue again in this report.

Impact

With access to the clipboard, a malicious application on the system could store the mnemonics and send
the data through the network to an attacker-controlled endpoint in order to gain access to the user’s
funds.

Preconditions

This Issue is possible if:

● On Android 9: The attacker controls a malicious application on the user’s device, and the user
uses the copy-to-clipboard functionality; or

● On other Devices: The user uses the copy-to-clipboard functionality and opens a malicious
application controlled by the attacker.

Feasibility

If the preconditions are met, the attack is simple. The attacker has to detect mnemonics (for example,
using regular expressions) or simply exfiltrate all clipboard contents.

Technical Details

On Android, the ClipboardManager can be utilized, and a listener can be used to listen for clipboard
changes. Starting at Android 10, only currently active applications and the configured keyboard can
access the clipboard at any time. From Android 12 (API level 31) on, the user is notified if an application
accesses the clipboard, but applications can process this information nonetheless. The Core Wallet
application supports Android 9 and higher, so Android 9 devices are still susceptible.

Mitigation

We suggest displaying a warning when the copy button is clicked that advises the user to only open a
trusted application for storing the mnemonic and then immediately return to the Core Wallet application
and press the enter button. This event can then be used to put a non-sensitive string in the clipboard
(empty or fixed string).

Remediation

We recommend removing the copy-to-clipboard feature and encouraging users to physically write down
the mnemonics instead.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 6
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/components/MnemonicScreen.tsx#L69
https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/utils/DeviceTools.ts
https://developer.android.com/about/versions/12/behavior-changes-all#clipboard-access-notifications

Status

The Ava Labs team has added functionality to display a warning before a user can copy the mnemonics to
clipboard. This warning informs users of the risks of copying the mnemonics. Additionally, the team noted
that the copy to clipboard functionality is a functionality that is typically offered by most mobile wallets
and removing it would require a user experience tradeoff. While we recognize that this is a broadly used
feature, our team still recommends refraining from sharing sensitive material in the clipboard, or, at a
minimum, overwriting them after a period of time to limit exposure to other applications or accidental
reveal to third parties by the user.

Verification

Partially Resolved.

Issue B: Unchecked Security Level Endangers Key Material

Location

app/contexts/EncryptedStoreProvider.tsx

Synopsis

The Core Wallet application requires a minimum API level of 28 (Android 9). Hence, while using the
react-native-keychain wrapper for the Keystore functionality, the usage of a hardware-backed
keystore is not guaranteed. Android 9 only requires a trusted execution environment (TEE) when a
fingerprint sensor is present. Therefore, the availability of secure, trusted hardware cannot be assumed
for all the devices the Core application is used on.

Impact

If an attacker is able to extract keys from a software-backed keystore, they could extract stored secrets
from devices.

Feasibility

This kind of attack is likely if keys can be extracted from a software-backed keystore, which can occur if
there is a vulnerability in the operating system and a functioning exploit for it.
Another attack vector might emerge if the device storage is dumped using physical access to the device.
This requires more dedicated hardware and specialized skills, but might be possible even when the
operating system itself remains uncompromised.

Remediation

We recommend that the functionality provided by the react-native-keychain be implemented to
check the available security level. This method can be used to determine whether a hardware-backed
keystore is available. If this is not the case, we recommend that a password (as opposed to a 6-digit pin)
be required for the application and used to derive a key with Argon2id,which can then be used to
encrypt inputs to the keystore functionality.
Additionally, we recommend implementing password throttling, increasing the wait time between each
failed password/pin input attempt. This mitigates the limited entropy a 6-digit pin provides.

Status

Since the percentage of users affected by this is considerably small, the Ava Labs team has decided not
to implement this remediation. Additionally, the Ava Labs team has implemented password throttling in
the application. However, our team believes that because device percentages can be subject to change,
the security level should be checked, and users should be informed if security assumptions of the Core
Wallet application do not hold on their device.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 7
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/contexts/EncryptedStoreProvider.tsx
https://source.android.com/docs/compatibility/9/android-9-cdd

Verification

Unresolved.

Issue C: The Module redux-persist-transform-encrypt Does Not Use
Authenticated Encryption

Location

package.json

Synopsis

Core uses the module redux-persist-transform-encrypt for encrypting the data stored in the
Redux store. However, that module only encrypts the data with AES-CBC and does not provide any other
means of authenticating the ciphertexts. Therefore, an attacker can tamper with the ciphertext without
being detected.

Impact

An attacker can modify the application state.

Preconditions

The attacker would need read and write access to the ciphertext, which is stored in the private data folder
of the application. This requires circumventing or breaking the security model of the operating system.

Feasibility

If the preconditions are met, the attack can be executed reliably and does not require special tooling.

Technical Details

The Cipher Block Chaining Mode (CBC mode) of operation is malleable, which means that given a
ciphertext, it is possible to generate a second ciphertext that decrypts to a meaningful message when
decrypted with the same key.

For this reason, usually an encryption scheme that provides authenticated encryption (AE) or
authenticated encryption with associated data (AEAD) is used. These include AES-GCM, NaCl
secretbox (i.e. ChaCha20-Poly1305), or the Encrypt-then-MAC pattern.

Since rooting an Android device or jailbreaking an Apple device inherently circumvents or breaks the
security model of the operating system, these devices are likely at a higher risk of being vulnerable.

Mitigation

We suggest warning users in the jailbreak screen that authenticated data may be modified without
detection.

Remediation

We recommend forking or patching the redux-persist-transform-encryptmodule to use an
authenticated encryption scheme.

Status

The Ava Labs team stated that they are exploring the possibility of implementing AES-GCM in the future.
They are currently using an encrypt-then-mac scheme that uses a secret key string as input to AES-CBC,
and correctly derives a separate key as input to HMAC.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 8
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/package.json

Verification

Resolved.

Issue D: Wallet Can Be Deleted Without Authentication

Location

screens/drawerNoWallet/NoWalletDrawerView.tsx#L63

development/app/AppHook.ts#L51

Synopsis

The wallet data can be deleted without entering the wallet pin/password.

Impact

Attackers with physical access to the device can access the application and delete the wallet, which could
result in users being locked out and unable to retrieve their funds. Attackers can also achieve this goal by
deleting the application via the system settings – although this is not possible with managed devices.

Preconditions

Attackers would need physical access to the device, and the walletstate should be empty.

Feasibility

If the preconditions are met, the attack is trivial.

Technical Details

When the wallet state is empty but a wallet exists, the “Enter Wallet” button is shown on the Watchlist
screen. In this state, the sidebar navigation offers the option to delete the wallet without authentication.

Remediation

We recommend requiring the wallet to ask for user authentication before user data is deleted to ensure
that wallet data is only deleted if proper user authentication is provided.

Status

The Ava Labs team stated that in their security model, an attacker with physical access to the unlocked
device is not considered. Although we find this to be reasonable, our team noted that such assumptions
have to be communicated to the user in order for them to be able to consider it in their own threat model.
Additionally, the Ava Labs team noted that in the event that an attacker with physical access to the device
deletes the application, this finding becomes invalid. While our team agrees with this reasoning, we
recommend that due diligence be undertaken since this finding could be combined with other exploits and
thus provides a different attack vector to the sole deletion of the application.

Verification

Determined Non-Issue.

Issue E: Mobile Wallet Does Not Enforce User Consent To Establish
Websocket Connection

Location

services/walletconnectv2/WalletConnectService.ts

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 9
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/screens/drawerNoWallet/NoWalletDrawerView.tsx#L63
https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/AppHook.ts#L51
https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/services/walletconnectv2/WalletConnectService.ts

Synopsis

The application does not require consent for the initial opening of a websocket connection to the pairing
wallet but will receive the session request information through the websocket connection and afterwards
present a customized screen (including, for example, a custom image for the dApp, the network, and a
selection method for the accounts). This allows malicious applications on the same device or malicious
websites to start a websocket communication channel without the user noticing.

Our team has already identified and reported this Issue in our previous Audit Report (Issue A), which we
delivered on January 30, 2023, and it has since not been resolved.

Impact

Given that there is a vulnerability in the code handling the RPC requests over the websocket or the
websocket libraries used, an attacker may be able to use those to, for example, gain access to private or
secret information, or render the Core Wallet application unusable.

Preconditions

An attacker would either need to control a malicious application on the same device or be able to have the
user open a website controlled by the attacker that can then send a deeplink to the application.

Feasibility

This attack would require another vulnerability in how RPC requests are handled or how websocket
connections are handled by the underlying operating system. Therefore, an attack at this point is unlikely,
yet still possible.

Remediation

Before the initial session request is performed via the WalletConnect library, we recommend showing a
generalized screen whenever a dApp connection is attempted. Hereby, the user would be informed that a
dApp connection attempt is about to occur and should attempt to retrieve the first set of information.
While this is not ideal in terms of user experience, it mitigates the risk of potential vulnerabilities being
exploited without the user noticing.

Status

The Ava Labs team has acknowledged the finding but decided against implementing the recommended
remediation in favor of a better user experience. The Ava Labs team additionally noted that they have
several measures in place to prevent messages from unknown senders.

Verification

Unresolved.

Suggestions

Suggestion 1: Adjust Argon2 Parameters

Location

app/utils/EncryptionHelper.ts#L19-L28

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 10
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/0b1bd1c4c6d5ca90042f5a21eacf995a7054e766/app/utils/EncryptionHelper.ts#L19-L28

Synopsis

The Argon2 standards RFC 9106 document specifies two recommended options for parameter selection.
However, the parameters used for deriving an encryption key from the PIN are not consistent with either
of them.

More specifically, the core uses 32 MiB space, 2 iterations, and a parallelism of 6, while the RFC
recommends using 64MiB space, 3 iterations, and a parallelism of 4.

Mitigation

We recommend implementing the parameters listed in the RFC 9106 document referenced above.

Status

The Ava Labs team has implemented the parameters listed in the RFC 9106 document, as recommended.

Verification

Resolved.

Suggestion 2: Remove Deprecated WalletConnect Version Support

Location

app/contexts/DeeplinkContext/DeeplinkContext.tsx#L81

app/store/walletConnect

Synopsis

Version 1 of the WalletConnect Protocol has been sunset since the 28th of June, 2023. During our code
review, our team noticed that code for supporting WalletConnect version 1 is still part of the codebase.
Since the old version is already sunset, the old protocol version should not be supported anymore.

Mitigation

We suggest that only WalletConnect version 2 be supported by the Core wallet. We also recommend
removing unused code from the codebase because, otherwise, this code may introduce or retain security
vulnerabilities.

Status

The Ava Labs team has removed support for WalletConnect version 1.

Verification

Resolved.

Suggestion 3: Display Informative Warning for Jailbroken/Rooted Devices

Location

app/screens/onboarding/JailbrokenWarning.tsx

Synopsis

Currently, only the string “jailbroken” is shown. Users should be warned about the risks of using a
jailbroken/rooted device with a cryptocurrency wallet.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 11
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://datatracker.ietf.org/doc/html/rfc9106#name-parameter-choice
https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/contexts/DeeplinkContext/DeeplinkContext.tsx#L81
https://github.com/LeastAuthority/Avalance-Mobile-Wallet/tree/development/app/store/walletConnect
https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/development/app/screens/onboarding/JailbrokenWarning.tsx

Mitigation

We recommend that a warning be displayed that informs users of the risks of using a jailbroken or rooted
device and that recommends against using such devices with the Core Wallet. For example, the warning
could note that keys and mnemonics are more vulnerable to exfiltration from other applications on
rooted/jailbroken devices.

Status

The Ava Labs team has mitigated this suggestion by displaying an informative warning to the user.

Verification

Resolved.

Suggestion 4: Encrypt ViewOnceInformation

Location

app/Repo.ts

Synopsis

ViewOnceInformation is stored in AsyncStorage. Comments suggest that a walletIdmay be
added at a later version of the wallet. In this case, encrypting the data would be preferred.

Mitigation

Any information that could be used to derive user behavior or gain user private information should be
encrypted utilizing authenticated encryption when stored within the application-specific storage, such as
AsyncStorage.

Status

The Ava Labs team has moved ViewOnceInformation to the encrypted redux store.

Verification

Resolved.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 12
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Avalance-Mobile-Wallet/blob/0b1bd1c4c6d5ca90042f5a21eacf995a7054e766/app/Repo.ts

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 13
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing
Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Avalanche Mobile Wallet Security Audit (2nd Review) | Ava Labs 14
12 April 2024 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

