
 

 

 

Security Audit Report: TezBox 

Tezos 
Report Version: 11 September 2018 
   

 



Table of Contents 

Overview 

Coverage 

Target Code and Revision 

Areas of Concern 

Methodology 

Manual Code Review 

Vulnerability Analysis 

Documenting Results 

Suggested Solutions 

Findings 

Code Quality and Results 

Issues 

Issue A: Unsafe Target Origin Used In window#postMessage 

Issue B: Unauthenticated Extension Invocation - Fingerprinting 

Issue C: Unauthenticated Extension Invocation - Phishing 

Issue D: Opening of Unencrypted Connection 

Issue E: Seed Phrase Backup Confirmation and Validation 

Issue F: Weak Password Validation Requirements 

Issue G: Private Key Can Be Exfiltrated From Disk In Clear Text 

Recommendations 

Consider Replacing the Chrome Plugin with the Web Wallet 

 

   

Security Audit Report | Tezos 1 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



Overview 
Tezos has requested that Least Authority perform a security audit of TezBox, a wallet used by the Tezos 
community and developed by Stephen Andrews.  

The audit was performed from August 6 - 13 2018 by Gordon Hall. The initial report was issued on August 
15, 2018. This updated report was issued on September 11, 2018 following the discussion and 
verification phase. 

 

Coverage 
Target Code and Revision 
For this audit, we performed research, investigation, and review of the TezBox codebase followed by issue 
reporting, along with mitigation and remediation instructions outlined in this report. The following code 
repositories are in scope: 

● TezBox Chrome extension and web wallet built with Angular 1 (share 90% of the code, with the 
exception being the targeted device / platform):  

○ Chrome extension: https://github.com/tezbox/tezbox-chrome-plugin 
○ Web Wallet: https://github.com/tezbox/tezbox-web-wallet  

● Wallets use JS library for interaction with the chain (eztz.min.js): 
○ https://github.com/stephenandrews/eztz 

Specifically, we examined the Git revisions: 

tezbox/tezbox-web-wallet@7ac3bd367e36dd4e7c62af0973fec31084d60279 

tezbox/tezbox-chrome-plugin@3c221b1dd71b4182d975f44de8b527d588eca2a5 

stephenandrews/eztz@f6982fe7465443571f0b68ac5fc58a177b5c0cbb 

All file references in this document use Unix-style paths relative to the project’s root directory. 

Areas of Concern 
Our investigation focused on the following areas: 

● Any attack that impacts funds, such as draining or manipulating of funds; 
● Application permissions and excess authority; 
● Input validation, sanitation, and XSS vulnerabilities; 
● User experience and design choices that could lead to phishing or user manipulation; 
● Any attack that impacts funds within the wallet; 
● The management of private keys within the wallet; and 
● Communications between the client wallet and servers. 

 

Security Audit Report | Tezos 2 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 

https://github.com/tezbox/tezbox-chrome-plugin
https://github.com/tezbox/tezbox-web-wallet
https://github.com/stephenandrews/eztz


Methodology  
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our 
security audits are to improve the quality of systems we review and aim for sufficient remediation to help 
protects users. The following is the methodology we use in our security audit process.  

Manual Code Review 
In manually reviewing all of the smart contract code, we look for any potential issues with code logic, error 
handling, protocol and header parsing, cryptographic errors, and random number generators. We also 
watch for areas where more defensive programming could reduce the risk of future mistakes and speed 
up future audits. Although our primary focus is on the in-scope code, we examine dependency code and 
behavior when it is relevant to a particular line of investigation. 

Vulnerability Analysis 
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration 
testing. We look at the project's website to get a high level understanding of what functionality the 
software under review provides. We then meet with with the developers to gain an appreciation of their 
vision of the software. We install and use the relevant software, exploring the user interactions and roles. 
While we do this, we brainstorm threat models and attack surfaces. We read design documentation, 
review other audit results, search for similar projects, examine source code dependencies, skim open 
issue tickets, and generally investigate details other than the implementation. We hypothesize what 
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue 
Investigation and Remediation process.  

Documenting Results  
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing 
them through successful remediation. Whenever a potential issue is discovered, we immediately create 
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of 
the issue. This process is conservative because we document our suspicions early even if they are later 
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the 
suspicion with unresolved questions, then confirming the issue through code analysis, live 
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test 
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of 
an attack in a live system.  

Suggested Solutions 
We search for immediate mitigations that live deployments can take, and finally we suggest the 
requirements for remediation engineering for future releases. The mitigation and remediation 
recommendations should be scrutinized by the developers and deployment engineers, and successful 
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the 
details are made public. 

 

Findings 
Code Quality and Results 
Overall, the source code for both the web wallet and Chrome plugin is well structured and easy to follow. 
This is an important property when it comes to maintaining the codebase and running productive audits. 
The JavaScript follows generally accepted best practices and idiomatic patterns in most areas. In fact, 
the majority of our findings are almost entirely correlated to excess authority and permissions within the 
Chrome plugin with a few exceptions. While the web wallet and eztz libraries were found to be reasonable 

Security Audit Report | Tezos 3 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



 

secure, the Chrome plugin was found to contain a number of critical issues that should be addressed 
immediately. 

We recommend that replacing the Chrome plugin code with the web wallet is considered. We’ve included 
more details about this in the Recommendations below. 

Issues 
We list the issues we found in the code in the order we reported them. 

ISSUE / SUGGESTION  STATUS 

Issue A: Unsafe Target Origin Used In window#postMessage  Verified 

Issue B: Unauthenticated Extension Invocation - Fingerprinting  Verified 

Issue C: Unauthenticated Extension Invocation - Phishing  Verified 

Issue D: Opening of Unencrypted Connection  Verified 

Issue E: Seed Phrase Backup Confirmation and Validation  Verified 

Issue F: Weak Password Validation Requirements  Verified 

Issue G: Private Key Can Be Exfiltrated From Disk In Clear Text  Verified 

Issue A: Unsafe Target Origin Used In window#postMessage 

Synopsis 

The script inject.js, which is injected into web pages, uses the window.postMessage method to 
communicate with the content script running from the extension. The window.postMessage method 
accepts a targetOrigin argument that specifies which windows should receive the message. This 
argument is provided as a wildcard in the code, which is an unsafe security practice.  

Impact 

Moderate. Failing to provide a specific target discloses the data you send to any interested malicious site. 

Preconditions 

User has a malicious site opened. 

Feasibility 

High. A malicious site can change the location of the window without your knowledge, and therefore it 
can intercept the data sent using postMessage. 

Remediation 

Always provide a specific targetOrigin, not *, if you know where the other window’s document should 
be located. In the case of this extension, since the recipient of this message is running as a content script, 
you can replace * with window.origin to ensure that only scripts running in this window may receive 
the message. From there the content script uses chrome.runtime.sendMessage, which is safe. 

Security Audit Report | Tezos 4 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



 

Verification 

The offending code has been entirely removed. 

Status 

Verified. 

Issue B: Unauthenticated Extension Invocation - Fingerprinting  

Synopsis 

The inject.js script, which is injected into every web page, exposes an API for interacting with the 
extension. This API provides methods getActiveAccount and getAllAccounts, which expose all of 
the user’s public keys associated with the wallet. 

Impact 

Critical. This is a massive privacy concern. Any web page can determine the user’s public key and can use 
this information to follow them around the internet. 

Preconditions 

None. 

Feasibility 

High. Any web page can call tbapi.getAllAccounts and store the result of this information to 
correlate with the user’s session, login, or other personally identifiable information. 

Technical Details 

Much like how Facebook like buttons and perma-cookies work, this allows attackers to correlate traffic 
and monitor users to build profiles for other types of attacks. If an attacker controls more than one web 
page that the user visits, the attacker can correlate that traffic to the same individual. Additionally, the 
knowledge of a public key can be used to determine the user’s Tezos balance, further leaking sensitive 
information about a user to any web page and providing plenty of information for choosing a high yield 
target. 

Mitigation 

Disable the methods for getActiveAccount and getAllAccounts as the privacy concerns far 
outweigh any potential use case for web pages accessing this information automatically. 

Remediation 

Engineer a request mechanism, where a web page that wishes to read the user’s public key may trigger a 
request popup from the extension and the user may confirm or deny the request to reveal this 
information. 

Verification 

The offending code has been entirely removed. 

Status 

Verified.  

Security Audit Report | Tezos 5 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



 
Issue C: Unauthenticated Extension Invocation - Phishing 

Synopsis 

The inject.js script, which is injected into every web page, exposes an API for interacting with the 
extension. This API provides methods signMessage and initiateTransaction, which can be used 
to make use of the user’s private key for arbitrary signing of some data (including transactions) as well as 
triggering the sending of funds to an arbitrary address. 

Impact 

Critical. Visiting a malicious or compromised website could lead to loss of funds or draining of wallet. 

Preconditions 

User visits a malicious or compromised web page. 

Feasibility 

High. Phishing attacks are very common and can be very effective, especially when executed through an 
interface that the user trusts. 

Technical Details 

Any page can call tbapi.initiateTransaction with arbitrary parameters parameters, destination, 
and amount, and the extension will show these in a popup interface for sending a transaction. This can be 
used effectively in phishing attempts or tricking the user into sending tokens somewhere. 

Additionally, any webpage can just trigger these popups to spam users in hopes while they are closing 
them that one accidentally gets confirmed. This is pretty feasible given the cancel button is directly under 
the confirm button. Since there is no built in protection against this like with traditional popups, any web 
page can blast these until the host computer runs out of memory. 

Any page can call the tbapi.signMessage method - again - from any webpage. The extension doesn’t 
automatically sign, it does open the extension and prompt the user to confirm, but, this makes phishing 
attacks trivial. Any webpage can trigger signature requests and get a signature from the user’s private key 
if the user accidentally or even intentionally clicks the sign button.  

Combined with the data leaked in Issue B, it is trivial for an attacker to craft a transaction message that 
drains the user’s wallet and request for the user to sign it. Since this prompt is shown in the wallet itself - 
an application the user trusts - it’s reasonable to believe that this could be a very effective phishing attack, 
especially if executed from a trusted but compromised web page. 

Mitigation 

Disable the methods for signMessage and initiateTransaction as the security concerns far 
outweigh any potential use case for web pages triggering these dialogues automatically. 

Remediation 

Engineer a request mechanism, where a web page that wishes to make use of these features of the 
extension (such as an ecommerce site or block explorer) can request to be added to a whitelist. Requests 
to sign a message or initiate a transaction should be verified by a cryptographic signature that 
corresponds to a public key added to the whitelist to prevent compromised pages from being able to 
impersonate the host page and trick the user into signing transactions. 

Security Audit Report | Tezos 6 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



 

 

Verification 

The offending code has been entirely removed. 

Status 

Verified.  

Issue D: Opening of Unencrypted Connection 

Synopsis 

Viewing the details of a transaction opens the tzscan block explorer via clear text connection. 

Impact 

Moderate. It’s possible for a man in the middle (MITM) attack to rewrite the response from tzscan and 
potentially trick a user into resending a transaction. 

Preconditions 

User’s network has been compromised or any link on the network path to tzscan. 

Feasibility 

Unknown. The MITM attack feasibility is high, but an attacker’s ability to use this in order to successfully 
trick a user into sending funds depends greatly on other facets of such a hypothetical attack. 

Remediation 

The tzscan website support HTTPS, so simply change the URL to use the SSL version of the site. Contact 
the site administrators and request that they redirect traffic on port 80 to 443 and enable HSTS. 

Verification 

The code has been updated to use the SSL version of the tzscan site. 

Status 

Verified. 

Issue E: Seed Phrase Backup Confirmation and Validation 

Synopsis 

During the creation of a new wallet, the user experience may drive users to accidentally lose or incorrectly 
record their seed phrase. 

Impact 

Moderate. A user that is less diligent may lose their funds. 

Preconditions 

None. 

Feasibility 

High. User experience does not encourage best practices for key backup. 

Security Audit Report | Tezos 7 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



 

Technical Details 

When creating a new wallet, after the seed phrase is displayed, clicking outside of the extension (or 
browser), destroys the extension state and loses the seed phrase. So copying the seed phrase into a text 
file to back it up, resets the wallet back to the beginning. The user can restore the wallet upon reopening, 
but may not realize they can still enter an additional passphrase since they may not have done when the 
generated the seed originally. 

Furthermore, when creating a new wallet there is no request for the user to confirm the seed phrase, 
which is a commonly accepted best practice for cryptocurrency wallets. 

Remediation 

Move the wallet creation flow from the extension popup into either a normal popup or a new tab, so that 
clicking outside of the window does not close the application and destroy its state. Require that the user 
confirm the seed phrase by typing it again on the following screen before continuing. Do not allow pasting 
into this field to force the user to have written the phrase down or otherwise saved it to a file off the 
clipboard. 

Verification 

The extension now operates entirely within a new tab instead of a popup window. Users are forced to 
confirm their seed phrase before continuing. 

Status 

Verified. 

Issue F: Weak Password Validation Requirements 

Synopsis 

The wallet key encryption passphrase requirements are weak and do not encourage strong password best 
practices. This affects both the Chrome plugin and the Web Wallet. 

Impact 

Low. The public key hash is used as a salt for PBKDF2 and therefore even weak passwords should be 
protected against dictionary attacks. However, given direct access to the user’s machine, a weak 
password may be found relatively quickly. 

Preconditions 

Attacker has direct access to the user’s computer. 

Feasibility 

Unknown. Depends largely upon the user and their individual threat model. 

Technical Details 

The only requirement that is enforced on passwords is that they are a minimum of eight characters. This 
means that “password” is valid and therefore this requirement does not really encourage good password 
security practices. Additionally the current validation does not trim whitespace, so eight spaces is also 
valid. 

Remediation 

Generally passwords should be at least 8 characters, but also contain at least one case change, and 
possibly a combination of number and/or symbols, and contain more than just whitespace. 

Security Audit Report | Tezos 8 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



 

Verification 

All of the suggested passphrase validation requirements are now enforced. 

Status 

Verified. 

Issue G: Private Key Can Be Exfiltrated From Disk In Clear Text 

Synopsis 

Before encrypting the user’s private key and after the wallet is unlocked, it is written to local storage in 
clear text. This allows any other applications running as the user or higher to read the private key from 
disk. 

Impact 

Critical. Can lead to complete loss of funds. 

Preconditions 

None. 

Feasibility 

High. Any application running on the user’s account or higher can read the private key. This means that 
any malware or other scripts designed to exfiltrate this information will have no problem getting it if the 
user installs such programs. This functionality could be easily disguised as another Tezos wallet or 
related application. 

Technical Details 

Before encryption and after unlocking the TezBox wallet, the user’s private key is written to 
localStorage under the key temp.sk. Chrome and other browsers use LevelDB under the hood to store 
items written to localStorage and save this embedded database under the user’s home directory. 

Due to the nature of LevelDB’s design, deleting items from localStorage does not delete them from 
LevelDB, because a “delete” operation in LevelDB does not actually remove data from disk, but instead 
“tombstones” it for later deletion when the database performs a compaction. Since the amount of data in 
this LevelDB will always be very small (as it is scoped to the extension), it is unlikely that it will ever reach 
a compaction checkpoint, therefore leaving the secret key on disk until the extension is uninstalled.  

In many cases the data may not even leave the log because it is so small. On GNU+Linux, our team was 
able to exfiltrate the private key simply with: 

cat ~/.config/chromium/Default/Local\ Extension\ 
Settings/fegbnheadgpfhmdkiignjegedpfobajn/000003.log | grep -a edsk 

Remediation 

Do not ever write secrets to local storage in clear text. Only retain them in memory while the application is 
unlocked. Inform all current users that they must uninstall the extension, reinstall a fixed version, and 
restore their wallet to remove the cleartext private key from disk. 

Verification 

The chrome extension now uses the web wallet code, which is not susceptible to this vulnerability. 

Security Audit Report | Tezos 9 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 



Status 

Verified. 

 
Recommendations 
We recommend that the Issues and Suggestions stated above are addressed as soon as possible and 
followed up with verification by the auditing team.  

Consider Replacing the Chrome Plugin with the Web Wallet  
As an alternative to the remediations noted for Issues B and C, we suggest that replacing the Chrome 
plugin with the web wallet is considered. Since the web wallet and the Chrome plugin share a large 
amount of the same code, but the web wallet was found to be of much sounder security than the plugin, 
we recommend considering abandoning the parts of the Chrome plugin that are specific to being an 
extension (script injection) and instead just write a strict Chrome plugin manifest for the web wallet. It is 
our teams opinion that the ability for any web page to trigger actions within the wallet is an anti-feature 
and poses more risk than it’s worth in user experience. 

Verification 

All of the code specific the chrome extension that was the subject of concern in this report has been 
removed and replaced with the web wallet code per this recommendation. 

Status 

Verified.  

 

 

Security Audit Report | Tezos 10 
2018 Least Authority TFA GmbH 
 
This audit makes no statements or warranties and is for discussion purposes only. 


